Article contents
The spectral eigenmatrix problems of planar self-affine measures with four digits
Published online by Cambridge University Press: 22 August 2023
Abstract
Given a Borel probability measure µ on $\mathbb{R}^n$ and a real matrix
$R\in M_n(\mathbb{R})$. We call R a spectral eigenmatrix of the measure µ if there exists a countable set
$\Lambda\subset \mathbb{R}^n$ such that the sets
$E_\Lambda=\big\{{\rm e}^{2\pi i \langle\lambda,x\rangle}:\lambda\in \Lambda\big\}$ and
$E_{R\Lambda}=\big\{{\rm e}^{2\pi i \langle R\lambda,x\rangle}:\lambda\in \Lambda\big\}$ are both orthonormal bases for the Hilbert space
$L^2(\mu)$. In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure
$\mu_{M,D}$ generated by an expanding integer matrix
$M\in M_2(2\mathbb{Z})$ and the four-elements digit set
$D = \{(0,0)^t,(1,0)^t,(0,1)^t,(-1,-1)^t\}$. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of
$\mu_{M,D}$ are given.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 66 , Issue 3 , August 2023 , pp. 897 - 918
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240220180110862-0470:S0013091523000469:S0013091523000469_inline613.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240220180110862-0470:S0013091523000469:S0013091523000469_inline614.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240220180110862-0470:S0013091523000469:S0013091523000469_inline615.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240220180110862-0470:S0013091523000469:S0013091523000469_inline616.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240220180110862-0470:S0013091523000469:S0013091523000469_inline617.png?pub-status=live)
- 1
- Cited by