Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T02:27:26.439Z Has data issue: false hasContentIssue false

Smooth parameterizations of power-subanalytic sets and compositions of Gevrey functions

Published online by Cambridge University Press:  04 June 2021

Siegfried Van Hille*
Affiliation:
KU Leuven, Celestijnenlaan 200B, 3001Leuven, Belgium ([email protected])

Abstract

We show that if $X$ is an $m$-dimensional definable set in $\mathbb {R}_\text {an}^\text{pow}$, the structure of real subanalytic sets with real power maps added, then for any positive integer $r$ there exists a $C^{r}$-parameterization of $X$ consisting of $cr^{m^{3}}$ maps for some constant $c$. Moreover, these maps are real analytic and this bound is uniform for a definable family.

Type
Research Article
Copyright
Copyright © The Author(s) 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binyamini, G. and Novikov, D., Complex cellular structures, Ann. Math. (2) 190(1) (2019), 145248.CrossRefGoogle Scholar
Bombieri, E. and Pila, J., The number of integral points on arcs and ovals, Duke Math. J. 59(2) (1989), 337357.CrossRefGoogle Scholar
Burguet, D., A proof of Yomdin-Gromov's algebraic lemma, Israel J. Math. 168 (2008), 291316.CrossRefGoogle Scholar
Cluckers, R., Pila, J. and Wilkie, A., Uniform parameterization of subanalytic sets and diophantine applications, Ann. Sci. Ecole Norm. Sup. 53(1) (2020), 142.CrossRefGoogle Scholar
Constantine, G. M. and Savits, T. H., A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc. 348(2) (1996), 503520.CrossRefGoogle Scholar
Gevrey, M., Sur la nature analytique des solutions des équations aux dérivées partielles, Premier mémoire. Ann. Sci. École Norm. Sup. 35(3) (1918), 129190.CrossRefGoogle Scholar
Gromov, M., Entropy, homology and semialgebraic geometry. Séminaire Bourbaki, vol. 1985-1986, Astérisque 145–146(5) (1987), 225240.Google Scholar
Jones, G. O., Miller, D. J. and Thomas, M. E. M., Mildness and the density of rational points on certain transcendental curves, Notre Dame J. Form.Log. 52(1) (2011), 6774.CrossRefGoogle Scholar
Krantz, S. G. and Parks, H. R., A primer of real analytic functions. Birkhäuser Advanced Texts, Second edition (2002). doi:10.1007/978-0-8176-8134-0.CrossRefGoogle Scholar
Miller, D. J., A preparation theorem for Weierstrass systems, Trans. Amer. Math. Soc. 358(10) (2006), 43954439. (electronic).CrossRefGoogle Scholar
Pila, J., Mild parameterization and the rational points of a Pfaff curve, Comment. Math. Univ. St. Pauli 55(1) (2006), 18.Google Scholar
Pila, J., Counting rational points on a certain exponential-algebraic surface, Ann. Inst. Fourier (Grenoble) 60(2) (2010), 489514.CrossRefGoogle Scholar
Pila, J. and Wilkie, A. J., The rational points of a definable set, Duke Math. J. 133(3) (2006), 591616.CrossRefGoogle Scholar
van den Dries, L., Tame topology and O-minimal structures, Lecture Note Series, Volume 248 (Cambridge University Press, 1998). doi:10.1017/CBO9780511525919.CrossRefGoogle Scholar
Van Hille, S., On a family of mild functions, Int. J. Number Theory (2021), (online ready). https://doi.org/10.1142/S179304212150041X.Google Scholar
Yomdin, Y., $C^{k}$-resolution of semialgebraic mappings. Addendum to “Volume growth and entropy”, Israel J. Math. 57(3) (1987), 301317.CrossRefGoogle Scholar
Yomdin, Y., Volume growth and entropy, Israel J. Math. 57(3) (1987), 285300.CrossRefGoogle Scholar
Yomdin, Y., Analytic reparametrization of semi-algebraic sets, J. Complexity 24(1) (2008), 5476.CrossRefGoogle Scholar
Yomdin, Y., Smooth parametrizations in dynamics, analysis, diophantine and computational geometry, Jpn. J. Ind. Appl. Math. 32(2) (2015), 411435.CrossRefGoogle Scholar