Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T07:34:38.107Z Has data issue: false hasContentIssue false

A Sharp Height Estimate for Compact Hypersurfaces with Constant k-Mean Curvature in Warped Product Spaces

Published online by Cambridge University Press:  27 October 2014

Sandra C. García-Martínez
Affiliation:
Instituto de Matemática e Estadística, Universidades de São Paulo, Rua do Matão 1010, Cidade Universitária, São Paulo, Brazil, ([email protected])
Debora Impera
Affiliation:
Dipartimento di Matematica e Applicazioni, Università degli studi di Milano Bicocca, via Cozzi 53, 20125 Milano, Italy, ([email protected])
Marco Rigoli
Affiliation:
Dipartimento di Matematica, Università degli studi di Milano, via Saldini 50, 20133 Milano, Italy, ([email protected])

Abstract

In this paper we obtain a sharp height estimate concerning compact hypersurfaces immersed into warped product spaces with some constant higher-order mean curvature and whose boundary is contained in a slice. We apply these results to draw topological conclusions at the end of the paper.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aledo, J. A., Espinar, J. M. and Gálvez, J. A., Height estimates for surfaces with positive constant mean curvature in , Illinois J. Math. 52(1) (2008), 203211.CrossRefGoogle Scholar
2.Alías, L. J. and Dajczer, M., Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv. 81(3) (2006), 653663.CrossRefGoogle Scholar
3.Alías, L.J. and Dajczer, M., Constant mean curvature hypersurfaces in warped product spaces, Proc. Edinb. Math. Soc. 50 (2007), 511526.CrossRefGoogle Scholar
4.Alías, L. J., Lira, J. H. S. De and Malacarne, J. M., Constant higher-order mean curvature hypersurfaces in Riemannian spaces, J. Inst. Math. Jussieu 5(4) (2006), 527562.CrossRefGoogle Scholar
5.Alías, L. J., Impera, D. and Rigoli, M., Hypersurfaces of constant higher order mean curvature in warped products, Trans. Am. Math. Soc. 365(2) (2013), 591621.CrossRefGoogle Scholar
6.Barbosa, J. L. M. and Colares, A. G., Stability of hypersurfaces with constant r-mean curvature, Annals Global Analysis Geom. 15 (1997), 277297.CrossRefGoogle Scholar
7.Cheng, X. and Rosenberg, H., Embedded positive constant r-mean curvature hypersurfaces in Mm × R, Anais Acad. Brasil. Ciênc. 77(2) (2005), 183199.CrossRefGoogle Scholar
8.Elbert, M. F., Constant positive 2-mean curvature hypersurfaces, Illinois J. Math. 46(1) (2002), 247267.CrossRefGoogle Scholar
9.Espinar, J. M., Gálvez, J. A. and Rosenberg, H., Complete surfaces with positive extrinsic curvature in product spaces, Comment. Math. Helv. 84(2) (2009), 351386.CrossRefGoogle Scholar
10.Fontenele, F. and Silva, S. L., A tangency principle and applications, Illinois J. Math. 45(1) (2001), 213228.CrossRefGoogle Scholar
11.Garding, L., An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957965.Google Scholar
12.Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order, 2nd edn, Grundlehren der Mathematischen Wissenschaften, Volume 224 (Springer, 1983).Google Scholar
13.Heinz, E., On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary, Arch. Ration. Mech. Analysis 35 (1969), 249252.CrossRefGoogle Scholar
14.Hoffman, D., Lira, J. H. S. De and Rosenberg, H., Constant mean curvature surfaces in M 2 × R, Trans. Am. Math. Soc. 358(2) (2006), 491507.CrossRefGoogle Scholar
15.Korevaar, N. J., Kusner, R., Meeks, W. H. III and Solomon, B., Constant mean curvature surfaces in hyperbolic space, Am. J. Math. 114(1) (1992), 143.CrossRefGoogle Scholar
16.Montiel, S., Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48(2) (1999), 711748.CrossRefGoogle Scholar
17.Rosenberg, H., Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117(2) (1993), 211239.Google Scholar
18.Tashiro, Y., Complete Riemannian manifolds and some vector fields, Trans. Am. Math. Soc. 117 (1965), 251275.CrossRefGoogle Scholar