Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T02:08:07.362Z Has data issue: false hasContentIssue false

Radial functions on compact support

Published online by Cambridge University Press:  20 January 2009

M. D. Buhmann
Affiliation:
Mathematik Departement, Eth Zentrum, 8092 Zürich, Switzerland, E-mail address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, radial basis functions that are compactly supported and give rise to positive definite interpolation matrices for scattered data are discussed. They are related to the well-known thin plate spline radial functions which are highly useful in applications for gridfree approximation methods. Also, encouraging approximation results for the compactly supported radial functions are shown.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1998

References

REFERENCES

1.Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions (Dover Publications, New York, 1972).Google Scholar
2.De Boor, C. and Ron, A., Fourier analysis of the approximation power of principal shift invariant spaces, Constr. Approx. 8 (1992), 427462.CrossRefGoogle Scholar
3.Buhmann, M. D., Cardinal interpolation with radial basis functions: an integral transform approach, in Multivariate Approximation Theory IV (Schempp, Walter, Zeller, Karl, eds., International Series of Numerical Mathematics Vol. 90, Birkhäuser Verlag, Basel, 1989), 4164.CrossRefGoogle Scholar
4.Buhmann, M. D., New developments in the theory of radial basis function interpolation, in Multivariate Approximation: From CAGD to Wavelets (Jetter, K. and Utreras, F. I., eds., World Scientific, Singapore, 1993), 3575.CrossRefGoogle Scholar
5.Buhmann, M. D., Discrete least squares approximation and pre-wavelets from radial function spaces, Math. Proc. Cambridge Philos. Soc. 114 (1993), 533558.CrossRefGoogle Scholar
6.Buhmann, M. D., Pre-Wavelets on Scattered Knots and from Radial Function Spaces: A Review, in Mathematics of Surfaces VI (Mullineux, G., ed., IMA Conference Proceedings Series, Oxford University Press, Oxford, 1996), 309324.Google Scholar
7.Buhmann, M. D. and Dyn, N., Spectral convergence of multiquadric interpolation, Proc. Edinburgh Math. Soc. 36 (1993), 319333.CrossRefGoogle Scholar
8.Duchon, J., Splines minimizing rotation invariant semi-norms in Sobolev spaces, in Constructive Theory of Functions of Several Variables (Schempp, Walter, Zeller, Karl, eds., LNM, Springer Verlag, Berlin, 1977), 85100.Google Scholar
9.Gasper, G., Positive integrals of Bessel functions, SIAM J. Math. Anal. 6 (1975), 868881.CrossRefGoogle Scholar
10.Golomb, W. and Weinberger, H. F., Optimal approximation and error bounds, in Numerical Approximation (Langer, R. E., ed., University of Wisconsin Press, Madison, 1959), 117190.Google Scholar
11.Micchelli, C. A., Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986), 1122.Google Scholar
12.Misiewicz, J. K. and Richards, D. ST. P., Positivity of integrals of Bessel functions, SIAM J. Math. Anal. 25 (1994), 596601.CrossRefGoogle Scholar
13.Schaback, R., Multivariate interpolation and approximation by translates of a basis function, in Approximation Theory VIII (Chui, C. K. and Schumaker, L. L., eds., World Scientific, Singapore, 1995).Google Scholar
14.Schaback, R. and Wendland, H., Special cases of compactly supported radial basis functions, University of Göttingen, 1994, preprint.Google Scholar
15.Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971).Google Scholar
16.Watson, G. N., A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1952).Google Scholar
17.Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, University of Göttingen, 1995, preprint.Google Scholar
18.Williamson, R. E., Multiply monotone functions and their Laplace transforms, Duke Math. J. 23 (1956), 189207.CrossRefGoogle Scholar
19.Wu, Z., Multivariate compactly supported positive definite radial functions, University of Göttingen, 1994, preprint.Google Scholar