Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T04:29:30.778Z Has data issue: false hasContentIssue false

On the solution sets to differential inclusions on an unbounded interval

Published online by Cambridge University Press:  20 January 2009

Vasile Staicu
Affiliation:
Department of Mathematics, Aveiro University, 3810–193 Aveiro, Portugal ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that for F: [0,∞) × ℝnK (ℝn) a Lipschitzian multifunction with compact values, the set of derivatives of solutions of the Cauchy problem

is a retract of

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1.Aubin, J. P. and Cellina, A., Differential inclusions (Springer, Berlin, 1984).Google Scholar
2.Bressan, A., Cellina, A. and Fryszkowski, A., A class of absolute retracts in space of integrable functions, Proc. Am. Math. Soc. 112 (1991), 413418.CrossRefGoogle Scholar
3.Bressan, A. and Colombo, G., Extensions and selections of maps with decomposable values, Studia Math. 102 (1992), 209216.CrossRefGoogle Scholar
4.Bressan, A. and Crasta, G., Extremal selections of multifunctions generating a continuous flow, Ann. Polon. Math. 40 (1994), 101117.Google Scholar
5.Colombo, R., Fryszkowski, A., Rzezukowski, T. and Staicu, V., Continuous selections of solution sets of lipschitzian differential inclusions. Funkcial. Ekvac. 34 (1991), 321330.Google Scholar
6.De Blasi, F. S. and Pianigiani, G., On the solution sets of nonconvex differential inclusions, J. Diff. Eqns 128 (1996), 541555.CrossRefGoogle Scholar
7.De Blasi, F. S.Pianigiani, G. and Staicu, V., Topological properties of nonconvex differential inclusions of evolution type, Nonlinear Analysis 24 (1995), 711720.Google Scholar
8.Gorniewicz, L., On the solution sets of differential inclusions, J. Math. Analysis Appl. 113 (1986), 235244.CrossRefGoogle Scholar
9.Hiai, F. and Umegaki, H., Integrals, conditional expectations and martingales of multivalued maps, J. Multivariate Analysis 7 (1977), 149182.Google Scholar
10.Naselli Ricceri, O. and Ricceri, B., Differential inclusions depending on a parameter, Bull. Pol. Acad. Sci. 37 (1989), 665671.Google Scholar
11.Papagiorgiou, N. S., A property of the solution set of differential inclusions in Banach spaces with Carathéodory orienter, Applic. Analysis 27 (1988), 279286.CrossRefGoogle Scholar
12.Ricceri, B., Une proprieté topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, Rend. Accad. Naz. Lincei 81 (1987), 283286.Google Scholar
13.Staicu, V., Arcwise connectedness of solution sets to differential inclusions, technical report CM/I 41 (Aveiro University, 1998)Google Scholar
14.Tolstonogov, A. A., On the structure of the solution sets for differential inclusions in Banach spaces, .Mat. USSR Sb. 46 (1983), 115.Google Scholar