Article contents
On the convergence of Diophantine Dirichlet series
Published online by Cambridge University Press: 23 February 2012
Abstract
We study various Dirichlet series of the form ∑n≥1f(πnα)/ns, where α is an irrational number and f(x) is a trigonometric function like cot(x), 1/sin(x) or 1/sin2(x). The convergence is slow and strongly depends on the Diophantine properties of α. We provide necessary and sufficient convergence conditions using the continued fraction of α. We also show that any one of our series is equal to a related series, which converges much faster, defined in term of iterations of the continued fraction operator α↦{1/α}.
- Type
- Research Article
- Information
- Copyright
- Copyright © Edinburgh Mathematical Society 2012