Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T08:26:00.241Z Has data issue: false hasContentIssue false

On the continuation of solutions of non-autonomous semilinear parabolic problems

Published online by Cambridge University Press:  13 July 2015

Alexandre N. Carvalho
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos, São Paulo, Brazil ([email protected])
Jan W. Cholewa
Affiliation:
Institute of Mathematics, Silesian University, 40-007 Katowice, Poland ([email protected])
Marcelo J. D. Nascimento
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo, Brazil ([email protected])

Abstract

We study non-autonomous parabolic equations with critical exponents in a scale of Banach spaces Eσ, σ ∈ [0,1 + μ). We consider a suitable E1+ε-solution and describe continuation properties of the solution. This concerns both a situation when the solution can be continued as an E1+ε-solution and a situation when the E1+ε-norm of the solution blows up, in which case a piecewise E1+ε-solution is constructed.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Commun. Pure Appl. Math. 12 (1959), 623727.Google Scholar
2. Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II, Commun. Pure Appl. Math. 7 (1964), 3592.Google Scholar
3. Amann, H., Existence and regularity for semilinear parabolic evolution equations, Annali Scuola Norm. Sup. Pisa 11 (1984), 693–676.Google Scholar
4. Amann, H., Global existence for semilinear parabolic systems, J. Reine Angew. Math. 360 (1985), 4783.Google Scholar
5. Amann, H., On abstract parabolic fundamental solution, J. Math. Soc. Jpn 39 (1987), 93116.Google Scholar
6. Amann, H., Parabolic evolution equations in interpolation and extrapolation spaces, J. Funct. Analysis 78 (1988), 233270.Google Scholar
7. Amann, H., Linear and quasilinear parabolic problems, volume I: abstract linear theory, Monographs in Mathematics, Volume 89 (Birkhäuser, 1995).Google Scholar
8. Amann, H., Hieber, M. and Simonett, G., Bounded H-calculus for elliptic operators, Diff. Integ. Eqns 3 (1994), 613653.Google Scholar
9. Arrieta, J. M. and Carvalho, A. N., Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and heat equations, Trans. Am. Math. Soc. 352 (2000), 285310.Google Scholar
10. Barbu, V., Nonlinear semigroups and differential equations in Banach spaces (Noordhoff, Groningen, 1976).CrossRefGoogle Scholar
11. Carvalho, A. N. and Cholewa, J. W., Local well-posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc. 66 (2002), 443463.CrossRefGoogle Scholar
12. Carvalho, A. N. and Cholewa, J. W., Attractors for strongly damped wave equations with critical nonlinearities, Pac. J. Math. 207 (2002), 287310.Google Scholar
13. Carvalho, A. N. and Cholewa, J. W., Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Analysis Applic. 310 (2005), 557578.CrossRefGoogle Scholar
14. Carvalho, A. N. and Cholewa, J. W., Strongly damped wave equations in , Discrete Contin. Dynam. Syst. (Suppl.) (2007), 230239.Google Scholar
15. Carvalho, A. N. and Nascimento, M. J. D., Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dynam. Syst. S 2 (2009), 449471.Google Scholar
16. Chen, S. and Triggiani, R., Proof of extension of two conjectures on structural damping for elastic systems: the case ½ ⩽ α ⩽ 1, Pac. J. Math. 136 (1989), 1555.Google Scholar
17. Cholewa, J. W. and Dlotko, T., Global attractors in abstract parabolic problems (Cambridge University Press, 2000).CrossRefGoogle Scholar
18. Cholewa, J. W. and Rodriguez-Bernal, A., Linear and semilinear higher order parabolic equations in , Nonlin. Analysis TMA 75 (2012), 194210.Google Scholar
19. Denk, R., Dore, G., Hieber, M., Prüss, J. and Venni, A., New thoughts on old results of R. T. Seeley, Math. Annalen 328 (2004), 545583.Google Scholar
20. Friedman, A., Partial differential equations of parabolic type (Prentice Hall, Englewood Cliffs, NJ, 1964).Google Scholar
21. Henry, D., Geometric theory of semilinear parabolic equations (Springer, 1981).Google Scholar
22. Lunardi, A., Analytic semigroup and optimal regularity in parabolic problems (Birkhäuser, 1995).Google Scholar
23. Pazy, A., Semigroups of linear operators and applications to partial differential equations (Springer, 1983).Google Scholar
24. Prüss, J. and Sohr, H., Imaginary powers of elliptic second order differential operators in Lp-spaces, Hiroshima Math. J. 23 (1993), 161192.CrossRefGoogle Scholar
25. Seeley, R., Interpolation in Lp with boundary conditions, Studia Math. 44 (1972), 4760.Google Scholar
26. Sobolevskiǐ, P. E., Equations of parabolic type in a Banach space, Am. Math. Soc. Transl. 2 49 (1966), 162.Google Scholar
27. Tanabe, H., Functional analytic methods for partial differential equations (Dekker, New York, 1997).Google Scholar
28. Triebel, H., Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam, 1978).Google Scholar
29. von Wahl, W., Global solutions to evolution equations of parabolic type, in Differential equations in Banach spaces (ed. Favini, A. and Obrecht, E.), Lecture Notes in Mathematics, Volume 1223, pp. 254266 (Springer, 1986).Google Scholar
30. Yagi, A., Abstract parabolic evolution equations and their applications, Springer Monographs in Mathematics (Springer, 2010).Google Scholar