Article contents
On simultaneous rational approximation to a p-adic number and its integral powers, II
Published online by Cambridge University Press: 07 May 2021
Abstract
Let $p$ be a prime number. For a positive integer $n$ and a real number $\xi$, let $\lambda _n (\xi )$ denote the supremum of the real numbers $\lambda$ for which there are infinitely many integer tuples $(x_0, x_1, \ldots , x_n)$ such that $| x_0 \xi - x_1|_p, \ldots , | x_0 \xi ^{n} - x_n|_p$ are all less than $X^{-\lambda - 1}$, where $X$ is the maximum of $|x_0|, |x_1|, \ldots , |x_n|$. We establish new results on the Hausdorff dimension of the set of real numbers $\xi$ for which $\lambda _n (\xi )$ is equal to (or greater than or equal to) a given value.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
References
- 2
- Cited by