Published online by Cambridge University Press: 20 January 2009
Let H be a finite or infinite dimensional Lie algebra. Barnes [2] and Towers [5] considered the case when H is a finite-dimensional Lie algebra over an arbitrary field, and all maximal subalgebras of H have codimension 1. Barnes, using the cohomology theory of Lie algebras, investigated solvable algebras, and Towers extended Barnes's results to include all Lie algebras. In [4] complex finite-dimensional Lie algebras were considered for the case when all the maximal subalgebras of H are not necessarily of codimension 1 but when
where S(H) is the set of all Lie subalgebras in H of codimension 1. Amayo [1]investigated the finite-dimensional Lie algebras with core-free subalgebras of codimension 1 and also obtained some interesting results about the structure of infinite dimensional Lie algebras with subalgebras of codimension 1.