No CrossRef data available.
Published online by Cambridge University Press: 09 December 2022
We apply a method inspired by Popa's intertwining-by-bimodules technique to investigate inner conjugacy of MASAs in graph $C^*$-algebras. First, we give a new proof of non-inner conjugacy of the diagonal MASA ${\mathcal {D}}_E$ to its non-trivial image under a quasi-free automorphism, where $E$ is a finite transitive graph. Changing graphs representing the algebras, this result applies to some non quasi-free automorphisms as well. Then, we exhibit a large class of MASAs in the Cuntz algebra ${\mathcal {O}}_n$ that are not inner conjugate to the diagonal ${\mathcal {D}}_n$.