Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T19:02:40.370Z Has data issue: false hasContentIssue false

On central traces and groups of symmetries of order unit Banach spaces

Published online by Cambridge University Press:  20 January 2009

Cho-Ho Chu
Affiliation:
University of Benin, Benin City, Nigeria
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A central trace on an order-unit Banach space A(K) is a centre-valued module homomorphism invariant under the group of symmetries of A(K).

The concept of central traces has been crucial in the theory of types for convex sets established in (4), (5). In von Neumann algebras, they are precisely the canonical centre-valued traces and their existence hinges on a fundamental theorem (Dixmier's approximation process) in von Neumann algebras. On the other hand, the existence of central traces in finite dimensional spaces is an easy consequence of Ryll-Nardzewski's fixed point theorem (5).

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1978

References

REFERENCES

(1) Alfsen, E. M., Compact convex sets and boundary integrals (Ergebnisse der Math. 57, Springer-Verlag, Berlin, 1971).CrossRefGoogle Scholar
(2) Bourbaki, N., General topology, Part 2 (Addison-Wesley, Reading, 1966).Google Scholar
(3) Chu, Cho-Ho, On standard elements and tensor products of compact convex sets, J. London Math. Soc. 14 (1976), 7178.CrossRefGoogle Scholar
(4) Chu, Cho-Ho and Wright, J. D. M., Une théorie des types pour une classe d'éspaces de Banach ordonnés, C.R. Acad. Sc. Paris 281A (1975), 633636.Google Scholar
(5) Chu, Cho-Ho and Wright, J. D. M., A theory of types for convex sets and ordered Banach spaces, Proc. London Math. Soc. 36 (1978), 494517.CrossRefGoogle Scholar
(6) Dunford, N. and Schwartz, J. T., Linear operators, Part I (Interscience, New York, 1958).Google Scholar
(7) Ellis, R., Lectures on topological dynamics (Benjamin, New York, 1969).Google Scholar
(8) Green, W. L., Topological dynamics and C*-algebras, Trans. Amer. Math. Soc. 210 (1975), 107121.Google Scholar
(9) Kadison, R. V., Isometries of operator algebras, Ann. of Math. (1951), 325338.Google Scholar
(10) Kadison, R. V., Irreducible operator algebras, Proc. Nat. Acad. Sc. USA 43 (1957), 273276.Google Scholar
(11) Lanford, O. and Ruelle, D., Integral representations of invariant states on B*- algebras, J. Math. Physics, 8 (1967), 14601463.Google Scholar
(12) Ledermann, W., Introduction to the theory of finite groups (Oliver and Boyd, Edinburgh, 1967).Google Scholar
(13) Namioka, I. and Phelps, R. R., Tensor products of compact convex sets, Pacific J. Math. 31 (1969), 469480.CrossRefGoogle Scholar
(14) Sakai, S., C*-algebras and W*-algebras (Ergebnisse der Math. 60, Springer-Verlag, Berlin, 1971).Google Scholar
(15) Wittstock, G., Ordered normed tensor products, Foundations of Quantum mechanics and ordered linear spaces ((Marburg) Lecture Notes in Physics 29, Springer-Verlag, Berlin, 1974).Google Scholar
(16) Yosida, K., Functional Analysis (Grundlehren der Math. Wissenchaften, Band 123, Springer-Verlag, Berlin, 1971).CrossRefGoogle Scholar