Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T19:04:14.408Z Has data issue: false hasContentIssue false

On a Splitting Theorem of Gaschütz

Published online by Cambridge University Press:  20 January 2009

John S. Rose
Affiliation:
Peterhouse, Cambridge
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be any finite group, and p any prime number. (All groups to be considered here are finite, and we assume this without further comment.) We denote by Kp(G) the unique smallest normal subgroup of G for which the quotient G/Kp(G) is a p-group. G/Kp(G) is called the p-residual of G. W. Gaschütz (2, Satz 7) has proved the following

Theorem. Set K = Kp(G). If the Sylow p-subgroups of K are abelian, then G splits over K.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1966

References

REFERENCES

(1)Carter, R. W., Nilpotent self-normalizing subgroups of soluble groups, Math. Zeitschrift, 75 (1961), 136139.CrossRefGoogle Scholar
(2)Gaschotz, W., Zur Erweiterungstheorie der endlichen Gruppen, J. reine angew. Math., 190 (1952), 93107.CrossRefGoogle Scholar
(3)Hall, P., The splitting properties of relatively free groups, Proc. London Math. Soc, (3) 4 (1954), 343356.CrossRefGoogle Scholar
(4)Huppert, B., Subnormale Untergruppen und p-Sylowgruppen, Acta Sci. Math. Szeged, 22(1961), 4661.Google Scholar
(5)Taunt, D. R., On A-groups, Proc. Cambridge Phil. Soc, 45 (1949), 2442.Google Scholar
(6)Wielandt, H., Sylowgruppen und Kompositions-Struktur, Abh. Math. Sent. Hamburg, 22 (1958), 215228.Google Scholar
(7)Zassenhaus, H. J., The Theory of Groups, 2nd ed. (New York, 1958).Google Scholar