Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T02:09:07.617Z Has data issue: false hasContentIssue false

On a problem of R. G. D. Richardson

Published online by Cambridge University Press:  20 January 2009

Paul Binding
Affiliation:
Department of Mathematics and StatisticsUniversity of CalgaryCalgary, AlbertaCanada, T2N 1N4
Hans Volkmer
Affiliation:
Department of Mathematical SciencesUniversity of Wisconsin—MilwaukeeP.O. Box 413Milwaukee, Wisconsin 53201, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1913 Richardson published necessary and sufficient conditions for a system of three Sturm–Liouville equations, linked by three parameters, to possess eigenfunctions with arbitrarily many zeros. His work contains errors, but we give conditions of his type valid for k self-adjoint equations, with k parameters.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1992

References

REFERENCES

1.Arscott, F. M., Periodic Differential Equations (Pergamon Press, London, 1964).Google Scholar
2.Atkinson, F. V., Multiparameter spectral theory, Bull. Amer. Math. Soc. 74 (1968), 127.CrossRefGoogle Scholar
3.Binding, P. A., Multiparameter definiteness conditions II, Proc. Roy. Soc. Edinburgh 93A (1982), 4761. Erratum: Proc. Roy. Soc. Edinburgh 103A, 359.CrossRefGoogle Scholar
4.Binding, P. A. and Browne, P. J., Classification of eigentuples for uniformly elliptic multiparameter problems, J. Math. Anal. Appl. 139 (1989), 268281.Google Scholar
5.Binding, P. A. and Browne, P. J., Eigencurves for two-parameter self-adjoint ordinary differential equations of even order, J. Differential Equations 79 (1989), 289303.Google Scholar
6.Eisenfeld, J., On the number of interior zeros of a one-parameter family of solutions to a second order differential equation satisfying a boundary condition at one endpoint, J. Differential Equations 11 (1982), 202206.Google Scholar
7.Faierman, M., An oscillation theorem for a one-parameter ordinary differential equation of the second order, J. Differential Equations 11 (1972), 1037.Google Scholar
8.Faierman, M., A note on Klein's oscillation theorem for periodic boundary conditions, Canad. Math. Bull. 17 (1975), 749755.Google Scholar
9.Loud, W. S., Stability regions for Hill's equation, J. Differential Equations 19 (1975), 226241.CrossRefGoogle Scholar
10.Meixner, J. and Schäfke, F. W., Mathieusche Funktionen und Sphäroidfunktionen (Springer, Berlin, 1954).Google Scholar
11.Naimark, M. A., Linear Differential Operators II (translated by Dawson, E. R., Ungar, New York, 1968).Google Scholar
12.Richardson, R. G. D., Theorems of oscillation for two linear differential equations of the second order with two parameters, Trans. Amer. Math. Soc. 13 (1912), 2234.Google Scholar
13.Richardson, R. G. D., Über die notwendigen und hinreichenden Bedingungen für das Bestehen eines Kleinschen Oszillations Theorems. Math. Ann. 73 (1912/1913), 289304. Erratum: Math. Ann. 74 (1913), 312.Google Scholar
14.Turyn, L., Sturm-Liouville problems with several parameters, J. Differential Equations 38 (1980), 239259.Google Scholar
15.Volkmer, H., Multiparameter Eigenvalue Problems and Expansion Theorems (Springer-Verlag, 1988).CrossRefGoogle Scholar