Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-06T03:45:20.206Z Has data issue: false hasContentIssue false

Notes on questions of W. Vogel concerning the converse to Bézout's theorem

Published online by Cambridge University Press:  20 January 2009

Thilo Pruschke
Affiliation:
Martin-Luther-Universität Halle-Wittenberg, Fachbereich Mathematik und Informatik, D 06099 Halle/s, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lazarsfeld proved a bound for the excess dimension of an intersection of irreducible and reduced schemes. Flenner and Vogel gave another approach for reduced, non-degenerate schemes which are connected in codimension one, using the intersection algorithm of Stückrad and Vogel and defining a new multiplicity k. Renschuch and Vogel considered a condition to ensure that there is no degeneration for more than two schemes. We define an integer which enables us to unify these methods. This allows us to generalize the result of Flenner and Vogel to non-reduced schemes by comparing the multiplicities j and k. Using this point of view we give applications to converses of Bézout's theorem; in particular we investigate the Cohen-Macaulay case.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1993

References

REFERENCES

1.Flenner, H. and Vogel, W., Connectivity and its application to improper intersection in ℙM, Math. Goltingensis 53 (1988).Google Scholar
2.Flenner, H., Van Gastel, L. and Vogel, W., Joins and intersections, Math. Ann. 291 (1991), 691704.CrossRefGoogle Scholar
3.Fulton, W., Intersection Theory (Berlin-Heidelberg-New York-Tokyo, Springer 1984).CrossRefGoogle Scholar
4.Fulton, W., Letter to W. Vogel dated 14 07, 1990.Google Scholar
5.Van Gastel, L., Excess intersections and a correspondence principle, Invent. Math. 103 (1991), 197221.CrossRefGoogle Scholar
6.Gröbner, W., Moderne Algebraische Geometrie. Die Idealtheoretischen Grundlagen (Wien-Insbruck, Springer, 1949).CrossRefGoogle Scholar
7.Hartshorne, R., Complete intersections and connectedness, Amer. J. Math. 84 (1962), 497508.CrossRefGoogle Scholar
8.O'carroll, L., On bounding the Stückrad-Vogel multiplicity, Proc. Edinburgh Math. Soc. 34 (1991), 251257.CrossRefGoogle Scholar
9.Renschuch, B. and Vogel, W., Perfektheit und die Umkehrung des Bezoutschen Satzes, Math. Nachr. 148 (1990), 313323.CrossRefGoogle Scholar
10.Roloff, H. and Stückrad, J., Bemerkungen über Zusammenhangseigenschaften und men-gentheoretische Darstellung projektiver algebraischer Mannigfaltigkeiten, Beiträge Algebra Geom. 8 (1979), 125131.Google Scholar
11.Stückrad, J. and Vogel, W., An algebraic approach to the intersection theory, in The curves seminar at Queen's II, Queen's Papers in Pure and Appl. Math. 61 (1982), 132.Google Scholar
12.Vogel, W., Lectures on Results on Bezout's Theorem (Tata Lecture notes, Bombay, 74, Berlin-Heidelberg-New York-Tokyo, Springer 1984).CrossRefGoogle Scholar
13.Vogel, W., A converse of Bézout's theorem, Ann. Univ. Ferrara Sez. VII (N.S.), 36 (1990), 8595.CrossRefGoogle Scholar
14.Vogel, W., On multiplicities of non-isolated intersection components, Publ. Res. Inst. Math. Sci. 27 (1992), 845860.CrossRefGoogle Scholar