Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T05:16:20.237Z Has data issue: false hasContentIssue false

Normalité de certains anneaux déterminantiels quantiques

Published online by Cambridge University Press:  20 January 2009

Laurent Rigal
Affiliation:
Université de Poitiers Département de Mathématiques 40, Avenue du Recteur Pineau 86022 Poitiers, France Current address: Université de Saint-Etienne Faculté des Sciences et Techniques, Mathématiques 23, Rue du Docteur Paul Michelon, 42023 Saint-Etienne Cedex, France, E-mail address: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Kq[X] = Oq(M(m, n)) be the quantization of the ring of regular functions on m × n matrices and Iq (X) be the ideal generated by the 2 × 2 quantum minors of the matrix X=(Xij)l≤i≤m, I≤j≤n of generators of Kq[X]. The residue class ring Rq(X) = Kq[X]/Iq(X) (a quantum analogue of determinantal rings) is shown to be an integral domain and a maximal order in its divisionring of fractions. For the proof we use a general lemma concerning maximalorders that we first establish. This lemma actually applies widely to prime factors of quantum algebras. We also prove that, if the parameter isnot a root of unity, all the prime factors of the uniparameter quantum space are maximal orders in their division ring of fractions.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1999

References

RÉFÉRENCES

1.Brown, K. A. and Goodearl, K. R., Prime spectra of quantum semisimple groups, Trans. Amer. Math. Soc. 348 (1996), 24652502.CrossRefGoogle Scholar
2.Bruns, W. and Vetter, U., Determinantal rings (Lecture Notes in Math. 1327, Springer-Verlag, Berlin, 1988).CrossRefGoogle Scholar
3.Chamarie, M., Localisations dans les ordres maximaux, Comm. Algebra 2 (1974), 279293.CrossRefGoogle Scholar
4.Chamarte, M., Sur les ordres maximaux au sens d'Asano (Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, Heft 3, 1979).Google Scholar
5.Chatters, A. W. and Jordan, D. A., Noncommutative unique factorisation rings, J. London Math. Soc. (2) 33 (1986), 2232.CrossRefGoogle Scholar
6.Goodearl, K. R., Prime ideals in skew polynomial rings and quantized Weyl algebras, J. Algebra 150 (1992), 324377.CrossRefGoogle Scholar
7.Goodearl, K. R. and Lenagan, T. H., Quantum determinantal ideals, preprint.Google Scholar
8.Maury, G., Ordres maximaux preque-factoriels, Comm. Algebra 8 (1980), 17111720.CrossRefGoogle Scholar
9.Maury, G. et Raynaud, J., Ordres maximaux au sens de K. Asano (Lecture Notes in Math. 808, Springer-Verlag, Berlin, 1980).CrossRefGoogle Scholar
10.McConnell, J. C. and Robson, J. C., Noncommutative Noetherian Rings (Wiley, Chichester, 1987).Google Scholar
11.Noumi, M., Yamada, H. and Mimachi, K., Finite dimensional representationsof the quantum group GL q(n; C) and the zonal spherical functions on U q(n – 1)\U q(n), Japan. J. Math. 19 (1993), 3180.CrossRefGoogle Scholar
12.Parshall, B. and Wang, J., Quantum Linear Groups, Mem. Amer. Math. Soc. 89 (1991), no. 439.Google Scholar
13.Rigal, L., Spectre de l'algèbre de Weyl quantique, Beiträge Algebra Geom. 37 (1996), 119148.Google Scholar
14.Rigal, L., Analogues quantiques de l'Algèbre de Weyl et Ordres Maximaux quantiques (Thèse de Doctorat de l'Université Paris VI, 1996).Google Scholar
15.Sharpe, D. W., On certain polynomial ideals defined by matrices, Quart. J. Math. Oxford Ser. (2) 15 (1964), 155175.CrossRefGoogle Scholar
16.Smith, S. P., Quantum groups: an introduction and survey for ring theorists, in Noncommutative Rings (Berkeley, CA, 1989), (Math. Sci. Res. Inst. Publ. 24, Springer-Verlag, New York, 1992), 131178.CrossRefGoogle Scholar