Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T01:57:32.916Z Has data issue: false hasContentIssue false

New sets of equi-isoclinic n-planes from old

Published online by Cambridge University Press:  20 January 2009

S. G. Hoggar
Affiliation:
University of Glasgow
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two n-planes Γ and Δ in real Euclidean r-space Rr are called isoclinic with parameter λ if the angle θ between any x in Γ and its orthogonal projection Px on Δ is unique, with cos2 θ = λ. Let vλ(n, r) denote the maximum number of equi-isoclinic (i.e. pairwise isoclinic) n-planes in Rr with parameter λ.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1977

References

REFERENCES

(1) Hlrzebruch, F., Topological Methods in Algebraic Geometry, 3rd edn, (Springer, Berlin, 1966).Google Scholar
(2) Hoggar, S. G., New equi-isoclinic n-planes from old, Proc. 5th British Combinatorial Conference,Aberdeen(1975),Google Scholar
Congressus Numerantium 15 (1976), 319322.CrossRefGoogle Scholar
(3) Hoggar, S. G., Quaternionic Equi-isoclinic n-planes, Ars Combinatoria 2 (1976), 1113.Google Scholar
(4) Lemmens, P. W. H. and Seidel, J. J., Equi-isoclinic Subspaces of Euclidean Spaces, Proc. Kon. Ned. Akad. Wet. Ser. A, 76 (1973), 98107.Google Scholar
(5) Porteous, I. R., Topological Geometry (New University Mathematics Series, Van Nostrand, London, 1969).Google Scholar