Published online by Cambridge University Press: 04 January 2012
We consider a class of critical quasilinear problems
where 0 ∈ Ω ⊂ ℝN, N ≥ 3, is a bounded domain and 1 < p < N, a < N/p, a ≤ b < a + 1, λ is a positive parameter, 0 ≤ μ < ≡ ((N − p)/p − a)p, q = q*(a, b) ≡ Np/[N − pd] and d ≡ a+1 − b. Infinitely many small solutions are obtained by using a version of the symmetric Mountain Pass Theorem and a variant of the concentration-compactness principle. We deal with a problem that extends some results involving singularities not only in the nonlinearities but also in the operator.