Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T11:15:02.337Z Has data issue: false hasContentIssue false

Maximal operators along flat curves with one variable vector field

Published online by Cambridge University Press:  13 November 2024

Joonil Kim*
Affiliation:
Department of Mathematics, Yonsei University, Seoul, Korea
Jeongtae Oh
Affiliation:
Research Institute of Mathematics, Seoul National University, Seoul, Korea
*
Corresponding author: Joonil Kim, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

We study a maximal average along a family of curves $\{(t,m(x_1)\gamma(t)):t\in [-r,r]\}$, where $\gamma|_{[0,\infty)}$ is a convex function and m is a measurable function. Under the assumption of the doubling property of $\gamma'$ and $1\leqslant m(x_1)\leqslant 2$, we prove the $L^p(\mathbb{R}^2)$ boundedness of the maximal average. As a corollary, we obtain the pointwise convergence of the average in r > 0 without any size assumption for a measurable m.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

1. Introduction

In this study, we analyse a maximal operator defined by a convex function $\gamma|_{[0,\infty)}$ and a measurable function $m:\mathbb{R}\rightarrow\mathbb{R}$. Specifically, our focus lies on the operator:

\begin{align*} \mathcal{M}^{m}_{\gamma}f(x_1,x_2):=\sup_{r \gt 0}\frac{1}{2r}\int_{-r}^{r}|f(x_1-t,x_2-m(x_1)\gamma(t))|\text{d}t, \end{align*}

where $\gamma:\mathbb{R}\rightarrow\mathbb{R}$ is an extension of $\gamma|_{[0,\infty)}$, which is a even or odd function. Recently, Guo, Hickman, Lie and Roos [Reference Guo, Hickman, Lie and Roos13] proved the Lp boundedness of maximal operators $\mathcal{M}^{m}_{\gamma}$ for the homogeneous curve $\gamma(t) = t^n$, with $n \geqslant 2$, assuming that m is measurable. However, the Lp boundedness of $\mathcal{M}^{m}_{\gamma}$ for the case n = 1 remains an open problem. So, we focus on flat convex curves, including piecewise linear curves. Given a convex extension $\gamma:\mathbb{R}\rightarrow \mathbb{R}$, we define the bounded doubling property for a derivative $\gamma'$ as follows:

(1.1)\begin{align} \text{there exists a constant}~\omega \gt 1~\text{such that}~\gamma'(\omega |t|)\ge 2\gamma'(|t|)\ \text{for all}~t\in \mathbb{R}. \end{align}

Now, we state the main theorem:

Main Theorem 1.

Let $m:\mathbb{R}\rightarrow\mathbb{R}$ be a measurable function such that $1\leqslant m(x)\leqslant 2$ for all $x\in \mathbb{R}$. Suppose that an extension γ of a convex function $\gamma|_{[0,\infty)}$ satisfies the bounded doubling property of $\gamma'$ in (1.1), with $\gamma(0)=0$. Then, there exists a constant Cω such that $\|\mathcal{M}^{m}_{\gamma}\|_{{L^p(\mathbb{R}^2)}\rightarrow L^p(\mathbb{R}^2)}\leqslant C_{\omega,p}$ holds for $1 \lt p\leqslant \infty$.

Remark 1.1.

  • The theorem can be extended to certain types of piecewise linear curves. Refer to Section 7 in [Reference Carbery, Christ, Vance, Wainger and Watson7] or Remark 5 in [Reference Kim14] for more details. Additionally, the condition (1.1) admits flat convex curves, such as $\gamma(t)=\text{e}^{-\frac{1}{|t|}}$ and $\text{e}^{-\text{e}^{\frac{1}{|t|}}}$, which are flat at the origin.

  • By using the dilation technique, we can extend our results to $\|\mathcal{M}^{m}_{\gamma}\|_{{L^p}\rightarrow L^p}\leqslant C\log_{2}(\frac{b}{a})$ under the assumption $0 \lt a\leqslant m(x)\leqslant b$.

In the view of pointwise convergence, we can drop the assumption $1\leqslant m(x_1)\leqslant 2$.

Corollary 1.1. For a measurable function $m:\mathbb{R}\rightarrow\mathbb{R}$ and a convex extension γ on $\mathbb{R}^1$ passing through the origin with its derivative $\gamma'$ satisfying property (1.1), we have

\begin{align*} \lim_{r\rightarrow0}\frac{1}{2r}\int_{-r}^{r}f(x_1-t,x_2-m(x_1)\gamma(t))\text{d}t=f(x_1,x_2) \text{a.e. } \end{align*}

for $f\in L^p(\mathbb{R}^2)$.

The study of maximal operators along flat convex curves has a rich history in Harmonic analysis by itself. In the 1970s, Stein and Wainger [Reference Stein and Wainger24] asked the general class of curves $(t,\gamma(t))$ for which there are Lp results for $\mathcal{M}^{1}_{\gamma}$. In the 1980s, Carlsson $\textit{et al. }$ [Reference Carlsson, Christ, Córdoba, Duoandikoetxea, Rubio de Francia, Vance, Wainger and Weinberg11] proved that $\mathcal{M}^{1}_{\gamma}$ is bounded on $L^p(\mathbb{R}^2)$ under the bounded doubling condition (1.1). In the 1990s, the study of maximal operators was extended to the curves with a variable coefficient, as demonstrated in [Reference Bennett.4, Reference Carbery, Wainger and Wright9, Reference Carbery, Wainger and Wright10, Reference Kim15, Reference Seeger and Wainger23]. Carbery, Wainger and Wright [Reference Carbery, Wainger and Wright9] established the Lp boundedness of $\mathcal{M}^{x_1}_{\gamma}$ along plane curves γ whose derivative satisfies the infinitesimal doubling property. Under the same assumption, Bennett [Reference Bennett.4] extended the L 2 results for $\mathcal{M}^{P}_{\gamma}$, where P is a polynomial. As a corollary of our main theorem, we derive the Lp boundedness of $\mathcal{M}^{P}_{\gamma}$ under much weaker assumptions on γ.

Corollary 1.2. For a polynomial $P:\mathbb{R}\rightarrow\mathbb{R}$ with degree d and a convex extension γ on $\mathbb{R}^1$ passing through the origin with its derivative $\gamma'$ satisfying property (1.1), there exists a constant $C_{\omega, d}$ independent of the coefficients of P such that $\|\mathcal{M}^{P}_{\gamma}\|_{{L^p(\mathbb{R}^2)}\rightarrow L^p(\mathbb{R}^2)}\leqslant C_{\omega,d,p}$ for $1 \lt p\leqslant \infty$.

Note that the infinitesimal doubling property implies the bounded doubling property. For more details, refer to [Reference Bennett.4].

1.1. Historical background

Zygmund conjecture is a long-standing open problem in harmonic analysis. This question inquires whether the Lipschitz regularity of u is sufficient to guarantee any non-trivial Lp bounds for the maximal operator:

\begin{align*} \mathcal{M}_{\gamma}^u(f)(x_1,x_2):=\sup_{r \gt 0}\frac{1}{2r}\int_{-r}^{r}|f(x_1-t,x_2-u(x_1,x_2)\gamma(t))|\text{d}t, \end{align*}

where $\gamma(t)=t$. Since the discovery of the Besicovitch set in the 1920s, it has been shown that the conjecture is false when the function u is only Hölder continuous C α with α < 1. However, the problem remains open under the Lipschitz assumption for u. In the 1970s, Stein and Wainger [Reference Stein and Wainger24] proposed an analogous conjecture for the Hilbert transform. Regarding the Hilbert transforms along vector fields, Lacey and Li [Reference Lacey and Li18] made a significant progress regarding the regularity of u in 2006, using time–frequency analysis tools. Later, Bateman and Thiele [Reference Bateman and Thiele2] obtained the Lp estimates for the Hilbert transform along a one-variable vector field. Their proof relied on the commutation relation between the Hilbert transform and Littlewood–Paley projection operators, which cannot be directly applied to the maximal operator $\mathcal{M}_{\gamma}^m$ due to its sub-linearity. Therefore, the problem for maximal operators remains open. For additional discussion on Stein’s conjecture, we recommend references [Reference Bateman1, Reference Bateman and Thiele2, Reference Lacey and Li17]. In the study of maximal operators, Bourgain [Reference Bourgain5] demonstrated the L 2 boundedness of $\mathcal{M}^{u}_{t}$ for real analytic functions u. In 1999, Carbery, Seeger, Wainger and Wright [Reference Carbery, Seeger, Wainger and Wright8] examined the maximal operators $\mathcal{M}_{t}^{m}$ along one variable vector field. One of the authors in this paper further extended this result in [Reference Kim16].

Recently, in [Reference Guo, Hickman, Lie and Roos13], Guo et al. investigated the Lp boundedness of $\mathcal{M}_{\gamma}^u$ under the Lipschitz assumption for u and homogeneous curve $\gamma(t)=t^n$ for n > 1. Later, Liu, Song and Yu [Reference Liu, Song and Yu20] extended the results to more general curves with the condition $\left|\frac{t\gamma''(t)}{\gamma'(t)}\right|\sim 1$. A crucial tool used in the proofs of both papers was the local smoothing estimate, which was established in [Reference Beltran, Hickman and Sogge3, Reference Mockenhaupt, Seeger and Sogge21]. For more history, we recommend the study [Reference Lie19] by Victor Lie, which presents a unified approach and includes a more general view of this topic as well as problems related to the concept of non-zero curvature.

1.2. Notation

Let $\psi:\mathbb{R}\rightarrow \mathbb{R}$ be a non-negative $C^{\infty}$ function supported on $[-2,2]$ such that $\psi\equiv 1$ on $[-1,1]$. Define $\varphi(t)=\psi(t)-\psi(2t)$ and $\varphi_l(t)=\frac{1}{2^l}\varphi(\frac{t}{2^l})$. Also, define $\psi^c(t)=1-\psi(t)$. Note that $\sum_{l\in \mathbb{Z}} \varphi\left(\frac{t}{2^l}\right)=1\ \text{for }t\neq0$ and $\text{supp}(\varphi)\subset\left\{\frac{1}{2}\leqslant|x|\leqslant2\right\}$. We define the Littlewood–Paley projection $\mathcal{L}_sf$ as $\widehat{\mathcal{L}_sf}(\xi):=\hat{f}(\xi){\varphi}\left(\frac{\xi_1}{2^s}\right)$. We shall use the notation $A\lesssim_d B$ when $A\leqslant C_dB$ with a constant $C_d \gt 0$ depending on the parameter d. Moreover, we write $A\sim_d B$, if $A\lesssim_d B$ and $B\lesssim_d A$. Let M HL be the Hardy–Littlewood maximal operator and M str be the strong maximal operator. Let χA be a characteristic function, which is equal to 1 on A and otherwise 0. Denote the dyadic pieces of intervals by

\begin{align*} I_{i}&=[2^{i-1},2^{i+1}]\cup[-2^{i+1},-2^{i-1}],\\ \tilde{I}_{i}&=[2^{i-2},2^{i+2}]\cup[-2^{i+2},-2^{i-2}], \end{align*}

and the corresponding strips by $S_i=I_i\times \mathbb{R}$, $\tilde{S}_i=\tilde{I}_i\times \mathbb{R}$.

2. Reduction

In this section, we present three propositions that have broad applicability. Let $\Gamma:\mathbb{R}^2\rightarrow \mathbb{R}$ be a measurable function and define a general class of operators

\begin{align*} T_jf(x_1,x_2)&:=\int {f(x_1-t,x_2-\Gamma(x_1,t))}\varphi_j (t)\text{d}t. \end{align*}

Proposition 2.1. Define $T_j^{\text{glo}}f(x_1,x_2):=\psi_{j+4}^c(x_1)T_jf(x_1,x_2)$. Under the measurability assumption of Γ, we have

\begin{align*} \|\sup_{j}|T_j-T_j^{\text{glo}}|\|_p\leqslant C_p, \end{align*}

for $1 \lt p\leqslant \infty$.

Proof. Denote that $\tilde{\varphi}(\frac{x}{2^j})=\sum_{k=-3}^{4}\varphi(\frac{x}{2^{j+k}})$, which has a localized support $|x|\sim 2^j$. Let $T_j^{\text{loc}}$ and $T_j^{\text{mid}}$ be operator, defined by

\begin{align*} T_j^{\text{loc}}f(x_1,x_2)&:=\psi_{j-4}(x_1)T_jf(x_1,x_2),\\ T_j^{\text{mid}}f(x_1,x_2)&:=\tilde{\varphi}{}\bigg(\frac{x_1}{2^j}\bigg)T_{j}f(x_1,x_2). \end{align*}

Then, we can decompose $T_j-T_j^{\text{glo}}$ into $T_j^{\text{mid}}+T_j^{\text{loc}}$. For the operator $T_j^{\text{mid}}$, replace the sup as $\ell^p$ sum. Then, we have

\begin{align*} {\left\|\sup_{j\in \mathbb{Z}}|T_j^{\text{mid}}f|\right\|}_{L^p({\mathbb{R}}^2)}\leqslant{\bigg(\sum_{j\in \mathbb{Z}}{\|T_j^{\text{mid}}f\|}^p_{L^p({\mathbb{R}}^2)}\bigg)}^{\frac{1}{p}}. \end{align*}

Denote $F(x_1)=\|f(x_1,\cdot)\|_{L^p(dx_2)}$. By applying Minkowski’s integral inequality and a change of variables, we get the pointwise inequality:

(2.1)\begin{align} \begin{split} \|T_j^{\text{mid}}f(x_1,\cdot)\|_{L^p(dx_2)}&\leqslant\int\bigg(\int|f(x_1-t,x_2-\Gamma(x_1,t))|^pdx_2\bigg)^\frac{1}{p}\varphi_j(t)\text{d}t\\ &\leqslant\int F(x_1-t)\varphi_j(t)dt\lesssim_{\varphi}M_{\text{HL}}F(x_1), \end{split} \end{align}

where the second inequality follows form the fact that $\Gamma(x_1,t)$ is independent of x 2. By (2.1) and the Lp boundedness of M HL, we obtain

\begin{align*} \bigg(\sum_{j\in \mathbb{Z}}\|T_j^{\text{mid}}f\|^p_{L^p(\mathbb{R}^2)}\bigg)^{\frac{1}{p}}&\leqslant \bigg(\sum_{j}\int\tilde{\varphi}\bigg(\frac{x_1}{2^j}\bigg)|M_{\text{HL}}F(x_1)|^pdx_1\bigg)^{\frac{1}{p}}\lesssim \|f\|_{p}. \end{align*}

which implies the Lp boundedness of $f\mapsto \sup_{j}|T_j^{\text{mid}}f|$ for p > 1. For the operator $T_j^{\text{loc}}f$, we observe the localization principle:

\begin{align*} T^{\text{loc}}_jf(x_1,x_2)=T^{\text{loc}}_j(\chi_{S_j}f)(x_1,x_2). \end{align*}

By combining this with $\sup_{j\in \mathbb{Z}}\|T_j\|_p \leqslant C$, we get the following estimate:

\begin{align*} \Big\|\sup_{j\in\mathbb{Z}}|T^{\text{loc}}_jf|\Big\|_p^p&=\sum_{j\in \mathbb{Z}}\int |{T}^{\text{loc}}_{j}\chi_{S_j}f(x_1,x_2)|^p\text{d}x\leqslant C\sum_{j\in \mathbb{Z}}\int |\chi_{S_j}f(x_1,x_2)|^p\text{d}x\lesssim\|f\|_p^p. \end{align*}

Therefore, we prove $\|\sup_{j}|T_j-T_j^{\text{glo}}|\|_p\leqslant C_p$ for $1 \lt p\leqslant \infty$.

By Proposition 2.1, in order to prove Theorem 1, it suffices to consider the maximal operator defined as

\begin{align*} f\mapsto \sup_j|T_j^{\text{glo}}f|~,\text{where}~T_j^{\text{glo}}=\psi_{j+4}^cT_j. \end{align*}

Proposition 2.2 (Space Reduction)

Let ${T}_{j}^{\ell}f(x_1,x_2):=\chi_{S_{\ell}}(x_1,x_2){T}_{j}^{\text{glo}}f(x_1,x_2)$. Then, the following inequality holds:

(2.2)\begin{align} \|\sup_{j\in\mathbb{Z}}|{T}^{\text{glo}}_{j}|\|_{L^p\rightarrow L^p}\lesssim \sup_{\ell\in \mathbb{Z}}\|\sup_{j\in\mathbb{Z}}|{T}^{\ell}_{j}|\|_{L^p\rightarrow L^p}. \end{align}

Proof. One can obtain (2.2) from the localization $T^{\ell}_jf(x_1,x_2)=T_j^{\ell}(\chi_{\tilde{{S_{\ell}}}}f)(x_1,x_2).$

Combining Proposition 2.1 and Proposition 2.2, we may restrict our attention to the maximal operator defined by $ f\mapsto \sup_j|T_j^{\ell}|$, supported on $|x_1|\sim 2^{\ell}\gg2^j$.

Proposition 2.3 (Frequency Reduction)

Suppose $\Gamma:\mathbb{R}\times [0,\infty)\rightarrow \mathbb{R}$ is measurable on $\mathbb{R}^2$ with $\Gamma(x_1,0)=0$ satisfying the following conditions:

\begin{align*} &\text{For every}~x_2\in \mathbb{R},~x_1\mapsto \Gamma(x_1,x_2)~\text{is measurable function.}\\ &\text{For every}~x_1\in \mathbb{R},~x_2\mapsto\Gamma(x_1,x_2)~\text{is convex increasing function.} \end{align*}

Let $\widehat{\mathcal{L}_j^{\text{low} }f}(\xi_1,\xi_2):=\hat{f}(\xi_1,\xi_2)\psi(2^j\xi_1)$ for $f\in \mathcal{S}(\mathbb{R}^2)$. Then, there exists a constant C independent of Γ such that

\begin{align*} \sup_{j\in\mathbb{Z}}|T_j(\mathcal{L}_j^{\text{low}}f)(x_1,x_2)|\leqslant C M^{2}M^{1}f(x_1,x_2), \end{align*}

where M i is the Hardy–Littlewood maximal operator taken in the ith variable.

Proof. For $g\in \mathcal{S}(\mathbb{R}^1)$ and $2^{j-1}\leqslant|t|\leqslant 2^{j+1}$, we have

\begin{align*} \begin{split} &\int g(x_1-t-s)\frac{1}{2^j}\check{\psi}\bigg(\frac{s}{2^j}\bigg)ds\lesssim_{\psi} M_{\text{HL}}g(x_1),\\ &\frac{1}{r}\int_{0}^{r} g(x_2-\Gamma(x_1,t))dt\leqslant2M_{\text{HL}}f(x_2-\Gamma(x_1,0))=2M_{\text{HL}}g(x_2), \end{split} \end{align*}

where the second inequality follows form the convexity of $t\mapsto \Gamma(x_1,t)$. For more details, we refer to Lemma 2 in [Reference Cho, Hong, Kim and Woo Yang12] and [Reference Córdoba and Rubio de Francia6]. Since $T_j(\mathcal{L}_j^{\text{low}}f)(x_1,x_2)$ is a composition of the above two functions, we obtain the desired pointwise inequality.

Set $\widehat{\mathcal{L}_j^{\text{high}}f}(\xi_1,\xi_2)= \hat{f}(\xi_1,\xi_2)\psi^c(2^j\xi_1)$. Following Proposition 2.3, it is enough to show the estimate $\|\sup_j|T_j^{\ell}(\mathcal{L}_j^{\text{high}}f)|\|_p\lesssim \|f\|_p$.

3. Proof of main theorem 1

Following the reduction section, we only consider $\mathcal{T}_{j}^{\ell}(\mathcal{L}_j^{\text{high}}f)$, which is given by

\begin{align*} \mathcal{T}_{j}^{\ell}(\mathcal{L}_j^{\text{high}}f)(x_1,x_2):=\psi_{j+4}^c(x_1)\chi_{S_{\ell}}(x)\int {\mathcal{L}_j^{\text{high}}f(x_1-t,x_2-m(x_1)\gamma(t))}\varphi_j(t)\text{d}t, \end{align*}

supported on $|x_1|\sim 2^{\ell}\gg 2^j$.

3.1. Main difficulty

In a view of pseudo-differential operator, we write

\begin{align*} \mathcal{T}_{j}^{\ell}(\mathcal{L}_j^{\text{high}}f)(x_1,x_2)=\int \text{e}^{2\pi i (x_1\xi_1+x_2\xi_2)}b_{j}(x_1,\xi_1,\xi_2)\hat{f}(\xi_1,\xi_2)d\xi_1d\xi_2, \end{align*}

with the symbol $b_j(x_1,\xi_1,\xi_2)$ given by

\begin{align*} b_j(x_1,\xi_1,\xi_2)=\chi_{I_{\ell}}(x_1)\psi^c(2^j\xi_1)\int \text{e}^{-2\pi i (2^jt\xi_1+m(x_1)\gamma(2^jt)\xi_2)}\varphi(t)\text{d}t. \end{align*}

When analysing an oscillatory integral with a phase $t\xi_1+m(x_1)\gamma(t)\xi_2$, it is usual to decompose each frequency variable ξ 1 and ξ 2 with dyadic scale. Specifically, in the case of a homogeneous curve, we can even estimate the asymptotic behaviour of oscillatory integral. However, under the flat condition (1.1), this usual approach does not work, as there are no comparablity condition $\left|\frac{\gamma'(2t)}{\gamma'(t)}\right|\sim 1$ and a finite type assumption for the curve. To overcome this situation, we will perform an angular decomposition in [Reference Carlsson, Christ, Córdoba, Duoandikoetxea, Rubio de Francia, Vance, Wainger and Weinberg11] for a function f and utilize the method in one of the author’s paper [Reference Kim15].

3.2. Angular decomposition

Set

\begin{align*} A_j(\xi_1,\xi_2):=\psi\bigg(\frac{\xi_1}{\xi_2 \gamma'(2^{j+1})}\bigg)-\psi\bigg(\frac{\xi_1}{\xi_2 \gamma'(2^{j-1})}\bigg) \end{align*}

and

\begin{align*} \widehat{\mathcal{A}_jf}(\xi_1,\xi_2)&:=\hat{f}(\xi_1,\xi_2)A_{j}(\xi_1,\xi_2),\\ {\mathcal{A}_j^cf}(x_1,x_2)&:=f(x_1,x_2)-\mathcal{A}_jf(x_1,x_2). \end{align*}

Note that we have the following Littlewood–Paley estimate in [Reference Carlsson, Christ, Córdoba, Duoandikoetxea, Rubio de Francia, Vance, Wainger and Weinberg11]:

\begin{align*} \bigg\|\bigg(\sum_{j\in \mathbb{Z}}|\mathcal{A}_{j}f|^2\bigg)^\frac{1}{2}\bigg\|_{L^p(\mathbb{R}^2)}\lesssim \|f\|_{L^p(\mathbb{R}^2)}~\text{for}~1 \lt p \lt \infty. \end{align*}

We have $\mathcal{A}_{j}\mathcal{L}_{j}^{\text{high}}f(x)=\mathcal{A}_{j}f(x)- \mathcal{L}_{j}^{\text{low}}\mathcal{A}_{j}f(x)$. Then, it gives

\begin{align*} |\mathcal{A}_{j}\mathcal{L}_{j}^{\text{high}}f(x_1,x_2)|\lesssim|\mathcal{A}_{j}f(x_1,x_2)|+|M^1\mathcal{A}_{j}f(x_1,x_2)| \end{align*}

from the pointwise estimate $|\mathcal{L}_{j}^{\text{low}}f(x_1,x_2)|\lesssim M^1f(x_1,x_2)$. By the vector valued estimate for Hardy–Littlewood maximal operator, the following estimate holds:

(3.1)\begin{align} \bigg\|\bigg(\sum_{j\in \mathbb{Z}}|\mathcal{A}_{j}\mathcal{L}_j^{\text{high}}f|^2\bigg)^\frac{1}{2}\bigg\|_{L^p(\mathbb{R}^2)}\lesssim \|f\|_{L^p(\mathbb{R}^2)}\ \text{for}~1 \lt p \lt \infty. \end{align}

We split $\mathcal{T}^{\ell}_{j}(\mathcal{L}_j^{\text{high}}f)$ into two terms:

\begin{align*} \mathcal{T}^{\ell}_{j}(\mathcal{L}_j^{\text{high}}f)=\mathcal{T}^{\ell}_{j}(\mathcal{A}_j\mathcal{L}_j^{\text{high}}f)+\mathcal{T}^{\ell}_{j}(\mathcal{A}_j^c\mathcal{L}_{j}^{\text{high}}f). \end{align*}

Then, we shall prove the following:

(3.2)\begin{align} \bigg\|\sup_{j\in \mathbb{Z}}|\mathcal{T}^{\ell}_{j}(\mathcal{A}_j\mathcal{L}_j^{\text{high}}f)|\bigg\|_{L^p(\mathbb{R}^2)}\lesssim \|f\|_{L^p(\mathbb{R}^2)}, \end{align}
(3.3)\begin{align} \bigg\|\sup_{j\in \mathbb{Z}}|\mathcal{T}^{\ell}_{j}(\mathcal{A}_j^c\mathcal{L}_j^{\text{high}}f)|\bigg\|_{L^p(\mathbb{R}^2)}\lesssim \|f\|_{L^p(\mathbb{R}^2)}. \end{align}

We can obtain the estimate (3.2) for p = 2 from the following process:

(3.4)\begin{align} \bigg\|\bigg(\sum_{j\in \mathbb{Z}}|\mathcal{T}^{\ell}_{j}(\mathcal{A}_j\mathcal{L}_j^{\text{high}}f)|^2\bigg)^\frac{1}{2}\bigg\|_{L^p(\mathbb{R}^2)}\lesssim \bigg\|\bigg(\sum_{j\in \mathbb{Z}}|\mathcal{A}_{j}\mathcal{L}_{j}^{\text{high}}f|^2\bigg)^\frac{1}{2}\bigg\|_{L^p(\mathbb{R}^2)}\lesssim \|f\|_{p}. \end{align}

Furthermore, the range of p can be extended by a bootstrap argument detailed in Section 3.4. In the following proposition, we focus particularly on the term $\mathcal{T}^{\ell}_{j}(\mathcal{A}_j^c\mathcal{L}_{j}^{\text{high}}f)$ and prove the estimate (3.3). Furthermore, the range of p can be extended by a bootstrap argument detailed in Section 3.4. In the following proposition, we focus particularly on the term $\mathcal{T}^{\ell}_{j}(\mathcal{A}_j^c\mathcal{L}_{j}^{\text{high}}f)$ and prove the estimate (3.3).

Proposition 3.1. Define the Littlewood–Paley projection $\widehat{\mathcal{L}_jf}(\xi_1,\xi_2):=\hat{f}(\xi_1,\xi_2)$$\varphi(\frac{\xi_1}{2^j})$ so that $\mathcal{T}^{\ell}_{j}(\mathcal{A}_j^c\mathcal{L}_{j}^{\text{high}}f)=\sum_{n=0}^{\infty}\mathcal{T}^{\ell}_{j}(\mathcal{A}_j^c\mathcal{L}_{n-j}f)$. For $f\in L^p(\mathbb{R}^2)$, It holds that

(3.5)\begin{align} &\left\|\sup_{j\in\mathbb{Z}}|\mathcal{T}^{\ell}_{j}(\mathcal{A}_j^c\mathcal{L}_{n-j}^{}f)|\right\|_{L^p(\mathbb{R}^2)} \le C2^{-\varepsilon_p n}\|f\|_{L^p(\mathbb{R}^2)}, \end{align}

for $1 \lt p \lt \infty$ and $n\geqslant0$.

Note that we need the following:

Lemma 3.1 (Reduction to one variable operator)

Consider the two operators $\mathcal{R}_1$ and $\mathcal{R}^{\lambda}_2$, given by

\begin{align*} \mathcal{R}_1f(x_1,x_2)&:=\int_{\mathbb{R}^2} e^{2\pi i (x_1\xi_1+x_2\xi_2)}a(x_1,\xi_1,\xi_2)\hat{f}(\xi_1,\xi_2) d\xi_1d\xi_2, \\ {\mathcal{R}}^{\lambda}_2g(x_1)&:=\int_{\mathbb{R}} e^{2\pi i x_1\xi_1}a(x_ 1,\xi_1,\lambda)\hat{g}(\xi_1) d\xi_1. \end{align*}

for $f\in \mathcal{S}(\mathbb{R}^2)$ and $g\in \mathcal{S}(\mathbb{R})$. Then, $\|\mathcal{R}_1\|_{L^2(\mathbb{R}^2)\rightarrow L^2(\mathbb{R}^2)}\leqslant\sup_{\lambda\in \mathbb{R}}\|\mathcal{R}^{\lambda}_2\|_{L^2(\mathbb{R})\rightarrow L^2(\mathbb{R})}$.

Proof of Lemma 3.1

Consider a function $f\in \mathcal{S}(\mathbb{R}^2)$ with $\|f\|_{L^2(\mathbb{R}^2)}=1$. Denote $\mathcal{F}_2f(x_1,\xi_2)=g_{\xi_2}(x_1)$. By Plancheral’s theorem with respect to x 2, we get

\begin{align*} \|\mathcal{R}_1f\|_2^2&=\int \bigg|\int_{\mathbb{R}^2} \text{e}^{2\pi i (x_1\xi_1+x_2\xi_2)}a(x_1,\xi_1,\xi_2)\hat{f}(\xi_1,\xi_2) d\xi_1d\xi_2\bigg|^2\text{d}x_1\text{d}x_2\\ &=\int \bigg|\int_{\mathbb{R}} \text{e}^{2\pi i x_2\lambda}\mathcal{R}^{\lambda}_2g_{\lambda}(x_1)\text{d}\lambda\bigg|^2\text{d}x_2\text{d}x_1\\ &=\int|\mathcal{R}^{\lambda}_2g_{\lambda}(x_1)|^2 \text{d}x_1\text{d}\lambda\leqslant \sup_{\lambda\in \mathbb{R}}\|\mathcal{R}^{\lambda}_2\|_{L^2(\mathbb{R})\rightarrow L^2(\mathbb{R})}^2\int|g_{\lambda}\|^2_{L^2(\mathbb{R})}\text{d}\lambda. \end{align*}

which yields the desired estimate.

3.3. Proof of Proposition 3.1

We shall prove $\|\mathcal{T}^{\ell}_j\mathcal{L}_{n-j}\mathcal{A}_j^c\|_{L^2(\mathbb{R}^2)\rightarrow L^2(\mathbb{R}^2)}\lesssim 2^{-\frac{n}{2}}$, which implies

\begin{align*} \begin{split} \bigg\|\sup_{j}|\mathcal{T}_j^{\ell}(\mathcal{L}_{n-j}\mathcal{A}_j^cf)|\bigg\|_{2}^2 &\lesssim \sum_{j}\|\mathcal{T}_{j}^{\ell}\mathcal{L}_{n-j}\mathcal{A}_j^c(\mathcal{L}_{n-j}f)\|_{2}^2\\ &\lesssim {2^{-n}}\|\sum_{j}\mathcal{L}_{n-j}f\|_{2}^2={2^{-n}}\|f\|_{2}^2 . \end{split} \end{align*}

We write $\mathcal{T}^{\ell}_j\mathcal{L}_{n-j}\mathcal{A}_j^cf$ as

\begin{align*} \mathcal{T}^{\ell}_j\mathcal{L}_{n-j}\mathcal{A}_j^cf(x_1,x_2)=\int \text{e}^{2\pi i (x_1\xi_1+x_2\xi_2)}a_j(x_1,\xi_1,\xi_2)\hat{f}(\xi_1,\xi_2)\text{d}\xi_1 \text{d}\xi_2, \end{align*}

with symbol $a_j(x_1,\xi_1,\xi_2)$ given by

\begin{align*} \chi_{I_{\ell}}(x_1)\varphi\bigg(\frac{\xi_1}{2^{n-j}}\bigg)A_j^c(\xi_1,\xi_2)\int_{\mathbb{R}} \text{e}^{-2\pi i (2^jt\xi_1+m(x_1)\gamma(2^jt)\xi_2)}\varphi(t)\text{d}t. \end{align*}

By Lemma 3.1, to prove (3.5), it suffices to show

\begin{equation*}\|\mathcal{R}^{\lambda}_j\|_{L^2(\mathbb{R})\rightarrow L^2(\mathbb{R})}\leqslant c_12^{-c_2n},\end{equation*}

where c 1 and c 2 are constants independent of j and λ and $\mathcal{R}^{\lambda}_jg(x):=\int \text{e}^{2\pi i x\xi}a_j(x,\xi,\lambda)\hat{g}(\xi)\text{d}\xi$ for $g\in \mathcal{S}(\mathbb{R})$. Note that $x\in \mathbb{R}$ and $\xi\in \mathbb{R}$. Hereafter, we omit j and λ in operators for simplicity. Observe that we write $\mathcal{R}$ with kernel K

\begin{align*} \mathcal{R}g(x)&=\int \text{e}^{2\pi i x\xi}a_j(x,\xi,\lambda)\bigg(\int \text{e}^{-2\pi i y\xi }g(y)\text{d}y\bigg)\text{d}\xi\\ &=\int K(x,y)g(y) \text{d}y, \end{align*}

where

\begin{align*} K(x,y):=\chi_{I_{\ell}}(x)\int \text{e}^{-2\pi i \lambda m(x)\gamma(2^jt)}\bigg(\int \text{e}^{2\pi i (x-2^jt-y)\xi}\varphi\bigg(\frac{\xi_1}{2^{n-j}}\bigg)\widehat{A_j^c}(\xi,\lambda)d\xi\bigg)\varphi(t)\text{d}t. \end{align*}

Recall that $|x|\sim 2^{\ell}\gg 2^j$ and denote

\begin{align*} Q_k&:=\{x\in \mathbb{R} : 2^{\ell-1}+k\cdot2^j\leqslant|x| \lt 2^{\ell-1}+(k+1)\cdot 2^j \},\\ Q'_k&:=\{x\in \mathbb{R} : 2^{\ell-1}+(k-4)\cdot2^j\leqslant|x| \lt 2^{\ell-1}+(k+5)\cdot 2^j \} , \end{align*}

for each integer k. We define the functions

\begin{align*} G_k(x,y)&:=K(x,y)\chi_{Q_k}(x)\chi^c_{{Q}'_k}(y),\\ B_k(x,y)&:=K(x,y)\chi_{Q_k}(x)\chi_{{Q}'_k}(y) \end{align*}

and use them to split the operator $\mathcal{R}$ as

\begin{align*} \mathcal{R}g(x)=&\sum_{k=0}^{3\cdot2^{\ell-j-1}-1}\bigg(\int G_k(x,y)g(y)\text{d}y+\int B_k(x,y)g(y)\text{d}y\bigg)\\ :=& \sum_{k=0}^{3\cdot2^{\ell-j-1}-1}\bigg(\mathcal{G}_kg(x)+\mathcal{B}_kg(x)\bigg). \end{align*}

Then, we shall prove the following:

Lemma 3.2. There exist constants C 1 and C 2 independent of $j, \ell$ and λ such that

(3.6)\begin{align} &\bigg\|\sum_{k=0}^{3\cdot2^{\ell-j-1}-1}\mathcal{G}_k\bigg\|_{L^2(\mathbb{R})\rightarrow L^2(\mathbb{R})}\leqslant C_1 2^{-n}, \end{align}
(3.7)\begin{align} &\bigg\|\sum_{k=0}^{3\cdot2^{\ell-j-1}-1}\mathcal{B}_k\bigg\|_{L^2(\mathbb{R})\rightarrow L^2(\mathbb{R})}\leqslant C_2 2^{-\frac{n}{2}}. \end{align}

Proof of (3.6)

Recall that

\begin{align*} K_{}(x,y):=\int \text{e}^{-2\pi i \lambda m(x)\gamma(2^jt)}\bigg(\int \text{e}^{2\pi i (x-2^jt-y)\xi}\varphi\bigg(\frac{\xi}{2^{n-j}}\bigg)A_j^c(\xi,\lambda)\text{d}\xi\bigg)\varphi(t)\text{d}t. \end{align*}

We build our proof upon the following observation:

(3.8)\begin{align} &|G_{k}(x,y)|\lesssim \frac{2^j}{2^n|x-y|^2}\chi_{Q_k}(x)\psi^c\bigg(\frac{|x-y|}{2^j}\bigg) . \end{align}

Proof of (3.8)

Note that $supp(\psi^c)\subset \left\{|x| \gt \frac{1}{2}\right\}$. We utilize the integration by parts twice with respect to ξ. Then, we get

\begin{align*} \bigg|\int \text{e}^{2\pi i (x-2^jt-y)\xi}\varphi_{n-j}(\xi)A_j^c(\xi,\lambda)\text{d}\xi\bigg|&\lesssim \frac{1}{(x-2^jt-y)^2}\int\bigg|\partial_{\xi}^2\bigg[\varphi\bigg(\frac{\xi}{2^{n-j}}\bigg)A_j^c(\xi,\lambda)\bigg]\bigg|\text{d}\xi\\ &\lesssim \frac{2^j}{2^n}\cdot \frac{1}{(x-2^jt-y)^2}. \end{align*}

Since $|x-2^jt-y| \gt rsim |x-y|$ on $x\in Q_k$, $y\in \mathbb{R}\setminus Q_k'$ for $\frac{1}{2}\leqslant t\leqslant 2$, we get the desired estimate.

We shall deduce the following estimate:

(3.9)\begin{align} \begin{split} \sum_{k=0}^{3\cdot2^{\ell-j-1}-1}\bigg(\int{|G_k(x,y)|}\text{d}x+\int{|G_{k}(x,y)|}\text{d}y\bigg)\lesssim {2^{-n}}. \end{split} \end{align}

Proof of (3.9)

By estimate (3.8) and the disjointness of Qks, we have

\begin{align*} \sum_{k=0}^{3\cdot2^{\ell-j-1}-1}\int{|G_k(x,y)|}\text{d}x&\lesssim \frac{2^j}{2^n}\sum_{k}\int_{|x-y| \gt 2^j}\frac{\chi_{Q_k}(x)}{|x-y|^2}\text{d}x\\ &\lesssim \frac{2^j}{2^n}\cdot \int_{|x| \gt 2^j}\frac{1}{|x|^2}\text{d}x={2^{-n}}. \end{align*}

and the second estimate also holds by the similar way.

By Schur’s lemma with the estimate (3.9), we finish the proof of (3.6).

Proof of (3.7)

For the operator $\mathcal{B}_k$, denote $g_k(y)=\chi_{Q_k'}(y)g(y)$. By the localization principle, we have

(3.10)\begin{align} \bigg\|\sum_{k=0}^{3\cdot2^{\ell-j-1}-1}\mathcal{B}_k\bigg\|_{L^2\rightarrow L^2}\lesssim \sup_{k\in \mathbb{Z}}\bigg(\sup_{\|g_k\|_2=1}{\|\mathcal{B}_kg_k\|_2}\bigg). \end{align}

To estimate $\|\mathcal{B}_kg_k\|_2$, we write it with the symbol expression again, which is

\begin{align*} \mathcal{B}_kg_k(x)=\int \text{e}^{2\pi i x\xi}\chi_{Q_k}(x)a_j(x,\xi,\lambda)\widehat{g_k}(\xi)\text{d}\xi, \end{align*}

where

\begin{align*} a_j(x,\xi,\lambda)=\chi_{I_{\ell}}(x)\varphi\bigg(\frac{\xi}{2^{n-j}}\bigg)A_j^c(\xi,\lambda)\int \text{e}^{-2\pi i (2^jt\xi+m(x_1)\gamma(2^jt)\lambda)}\varphi(t)\text{d}t, \end{align*}

Observe that

(3.11)\begin{align} |a_j(x,\xi,\lambda)|\lesssim \frac{1}{2^j|\xi|}. \end{align}

Proof of (3.11)

From the support of $A^c_j(\xi,\lambda)$, we have $|\frac{\xi}{\lambda}|\nsim|\gamma'(2^jt)|$ for $|t|\sim1$. This enables us to apply the integration by parts with respect to variable t. Then, we get

\begin{align*} &\bigg|\int \text{e}^{-2\pi i (\xi 2^jt+\lambda m(x)\gamma(2^jt))}\varphi(t)\text{d}t\bigg|\\ &\quad \lesssim \bigg|\int \text{e}^{-2\pi i (\xi 2^jt+\lambda m(x)\gamma(2^jt))}\partial_t\bigg(\frac{\varphi(t)}{2^j(\xi+\lambda m(x)\gamma'(2^jt))}\bigg)\text{d}t\bigg|\\ &\quad \lesssim \int \frac{|2^j\lambda m(x)2^j\gamma''(2^jt)|}{\{2^j(\xi+\lambda m(x)\gamma'(2^jt))\}^2}\cdot{\varphi(t)}\text{d}t+\int \frac{|\varphi'(t)|}{|2^j(\xi+\lambda m(x)\gamma'(2^jt))|}\text{d}t\\ &\quad \lesssim \int \frac{|\varphi'(t)|}{|2^j(\xi+\lambda m(x)\gamma'(2^jt))|}dt\lesssim \frac{1}{2^{j}|\xi|}. \end{align*}

Then, we get the desired estimate.

From the observation (3.11), it is easy to check

\begin{align*} \int|\chi_{Q_k}(x)a_j(x,\xi,\lambda)|\text{d}x\lesssim {2^{-(n-j)}},&\\ \int|a_j(x,\xi,\lambda)|\text{d}\xi\lesssim {2^{-j}}.& \end{align*}

By Schur’s lemma with the above estimate and (3.10), we obtain (3.7) in Lemma 3.2.

3.4. A bootstrap argument for the proof of Theorem 1

In the spirit of Nagel, Stein and Wainger [Reference Nagel, Stein and Wainger22], we claim that

Lemma 3.3. If $\|\sup_{j}|\mathcal{T}_j^{\ell} f|\|_{L^p(\mathbb{R}^2)}\leqslant C_1\|f\|_{L^p(\mathbb{R}^2)}$ and $\|\mathcal{T}_j^{\ell} f\|_{L^r(\mathbb{R}^2)}\leqslant C_2\|f\|_{L^r(\mathbb{R}^2)}$ for $1 \lt r \lt \infty$,

(3.12)\begin{align} &\bigg\|\left(\sum_j|\mathcal{T}_j^{\ell}f_{j}|^{2} \right)^{\frac{1}{2}}\bigg\|_{L^{q}(\mathbb{R}^2)}\leqslant (C_1C_2)^{\varepsilon_q}\bigg\|\left(\sum_j|{f_{j}}|^{2}\right)^{\frac{1}{2}}\bigg\|_{L^{q}(\mathbb{R}^2)} \end{align}

holds for all q with $\frac{1}{q} \lt \frac{1}{2}(1+\frac{1}{p})$.

Proof. Consider vector valued functions $\mathfrak{f}=\{f_j\}$ and $\mathfrak{Tf}=\{\mathcal{T}_j^{\ell}f_j\}$. Since the operator $\mathcal{A}_j$ is a positive, it follows that $\|\mathfrak{Tf}\|_{L^p({\mathbb{R}}^2,l^\infty)}\lesssim\|\mathfrak{f}\|_{L^p({\mathbb{R}}^2,l^\infty)}$ and $\|\mathfrak{Tf}\|_{L^r({\mathbb{R}}^2,l^r)}$ $\lesssim \|\mathfrak{f}\|_{L^r({\mathbb{R}}^2,l^r)}$ for r near 1. Applying the Riesz–Thorin interpolation for vector-valued function, we get the conclusion.

Combining (3.4), Proposition 2.3 and Proposition 3.1, we obtain the estimate

(3.13)\begin{align} \bigg\|\sup_{j\in \mathbb{Z}} |\mathcal{T}_{j}^{\ell}f|\bigg\|_{p}\leqslant C_p\|f\|_{p} \end{align}

for p = 2. Moreover, we have

(3.14)\begin{align} \|\mathcal{T}_{j}^{\ell}f\|_{r}\leqslant\|f\|_{r} \end{align}

for r > 1. By using Lemma 3.3 with (3.13) and (3.14), we obtain (3.12) for $\frac{4}{3} \lt p\leqslant 2$. Then, by setting $\{f_j\}_{j\in \mathbb{Z}}=\{\mathcal{A}_j^c\mathcal{L}_{n-j}f\}_{j\in \mathbb{Z}}$ in (3.12) and applying interpolation with the decay estimate (3.5), we obtain Proposition 3.1 for $\frac{4}{3} \lt p\leqslant 2$. To treat the bad part in (3.4), set $\{f_j\}_{j\in \mathbb{Z}}=\{\mathcal{A}_j\mathcal{L}_j^{\text{high}}f\}_{j\in \mathbb{Z}}$. Then, we apply Lemma 3.3 again to get the first inequality of (3.4), which implies (3.13) for $\frac{4}{3} \lt p\leqslant 2$. We can iteratively apply Lemma 3.3 with a wider range of p until we get (3.13) for all p > 1. With this, we complete the proof of Main Theorem 1.

4. Application

In this section, we shall prove Corollary 1.1 and Corollary 1.2.

4.1. Proof of Corollary 1.1

For a measurable function $m:\mathbb{R}\rightarrow\mathbb{R}$, denote that

\begin{align*} &S_r^mf(x_1,x_2)=\frac{1}{2r}\int_{-r}^{r}f(x_1-t,x_2-m(x_1)\gamma(t))\text{d}t,\\ &\tilde{E}^k=\{(x_1,x_2)\in\mathbb{R}^2: 2^{k}\leqslant m(x_1)\leqslant 2^{k+1}\}. \end{align*}

By Main Theorem 1 and the second part of Remark 1.1, one can easily check that

(4.1)\begin{align} \|\sup_{r \gt 0}|\chi_{\tilde{E}^k}(\cdot)S_r^mf|\|_p\lesssim \|f\|_p. \end{align}

To prove Corollary 1.1, it suffices to show that for each α > 0 and $k\in \mathbb{Z}$, the set

\begin{align*} E_\alpha^k=\bigg\{(x_1,x_2)\in \tilde{E}^k:\limsup_{r\rightarrow0}|S_r^mf(x_1,x_2)-f(x_1,x_2)| \gt 2\alpha\bigg\} \end{align*}

has measure zero. Consider a continuous function gɛ of compact support with $\|f-g_{\varepsilon}\|_p \lt ~\varepsilon$. One can see that $\limsup_{r\rightarrow0}|S_r^mf(x_1,x_2)-f(x_1,x_2)|\leqslant \mathcal{M}_{\gamma}^{m}(f-g_{\varepsilon})(x)+|g_{\varepsilon}(x)-f(x)|.$ For $F_{\alpha}^k$ and $G_{\alpha}^k$, defined by

\begin{align*} &F_{\alpha}^k=\{x\in E_{\alpha}^k:\mathcal{M}_{\gamma}^{m}(f-g_{\varepsilon})(x) \gt \alpha\},\\ &G_{\alpha}^k=\{x\in E_{\alpha}^k:|f(x)-g_{\varepsilon}(x)| \gt \alpha\}, \end{align*}

we have $m(E_{\alpha}^k)\leqslant m(F_{\alpha}^k)+m(G_{\alpha}^k)$. Applying estimate (4.1), we get

\begin{align*} m(F_{\alpha}^k)+m(G_{\alpha}^k)\leqslant \frac{2\varepsilon^p}{\alpha^p}. \end{align*}

As $\varepsilon\rightarrow 0$, we get the conclusion.

4.2. Proof of Corollary 1.2

In order to achieve our goal of removing the dependence of the coefficients of polynomial P on factors other than its degree, we consider the following lemma.

Lemma 4.1. Given a polynomial P with degree d, we can find a partition $\{s_0,s_1,s_2,\dots,s_{n(d)}\}$ such that for each interval $[s_i,s_{i+1}]$, there exists a pair $(m_i,s_{j_i})$ with $1\leqslant m_i\leqslant d$, satisfying

(4.2)\begin{align} {\sup_{x\in[s_i,s_{i+1}]}{\frac{|P(x)|}{|x-s_{j_i}|^{m_{i}}}}}\sim_d{\inf_{x\in[s_i,s_{i+1}]} \frac{|P(x)|}{|x-s_{j_i}|^{m_{i}}}}. \end{align}

Proof of Lemma 4.1

We seek to construct a partition $\mathcal{P} = \{s_1, s_2, ..., s_{n(d)}\}$ of $(-\infty,\infty)$ such that, for each subinterval $[s_i, s_{i+1}]$, there exist non-negative integers mi and ji satisfying (4.2). Consider a polynomial P(x) represented by the following expression:

\begin{align*} P(x) = \prod_{i=1}^{d_1} (x - \alpha_i)^{q_i}, \end{align*}

where αi are distinct real numbers. Let $U_i=\{x\in\mathbb{R}: |x-\alpha_i| \lt |x-\alpha_k| \text{ for all } k=1,\dots,d_1\}$. For each i and k, let $\mathcal{U}_i^{k}(1)=\{x\in U_i:2|x-\alpha_i|\geqslant |x-\alpha_k| \}$ and $\mathcal{U}_i^{k}(0)=\{x\in U_i:2|x-\alpha_i| \lt |x-\alpha_k| \}$. Then, for any $x\in \mathbb{R}$, there exists an index i such that $x\in U_i$. We define the set-valued function Fi on $\{0,1\}^{d_1}$ by $F_i(a)=\bigcap_{k=1}^{d_1}\mathcal{U}_{i}^k(a_k)$ for $a=(a_k)\in\{0,1\}^{d_1}$. By using the set-valued function F, we can decompose each set Ui into a finite number of disjoint open intervals, that is,

\begin{align*} U_i&=\mathcal{U}_{i}^k(0)\cup\mathcal{U}_{i}^k(1)=\bigcap_{k=1}^{d_1}\bigg(\mathcal{U}_{i}^k(0)\cup\mathcal{U}_{i}^k(1)\bigg)= \bigcup_{a\in\{0,1\}^{d_1}} F_i(a). \end{align*}

For each interval $F_i(a)=[s_i,s_{i+1}]$, we take $m=\sum_{\{k:a_k=1\}}q_k$ and $s_{j_i}=\alpha_i$. Observe that we have the following inequalities for each fixed i:

\begin{align*} & {|x-\alpha_k|}\sim{|x-\alpha_i|^{}}~\text{for all}~k~\text{such that}~a_k=1, \\ &{|x-\alpha_k|^{}}\sim{|\alpha_i-\alpha_k|^{}}~\text{for all}~k~\textrm{such that}~a_k=0. \end{align*}

By using these observation, we have (4.2) on $[s_i,s_{i+1}]$.

To handle a general polynomial, we can employ a similar approach. First, we can express the polynomial as

\begin{align*} P(x) = \prod_{i=1}^{d_1} (x - \alpha_i)^{q_i}\prod_{i=1}^{d_2}\{(x-\beta_i)^2+\delta_i^2\}^{r_i}. \end{align*}

To treat this, we give one more criterion comparing between $2|x-\alpha_i|$ and $\max\{|x-\beta_k|,|\delta_k|\}$ instead of $|x-\alpha_k|$. Then. the last part can be proved similarly.

Proof of the Corollory 1.2

Given a polynomial P(x), we obtain a partition $\mathcal{P}=\{s_0,s_1,\dots,s_{n(d)}\}$ from Lemma 4.1. We then decompose $\mathcal{M}_{\gamma}^{P}f(x)$ as

\begin{align*} \mathcal{M}_{\gamma}^{P}f(x) = \sum_{i=0}^{n(d)}\chi_{[s_i,s_{i+1}]}(x)\mathcal{M}_{i}f(x), \end{align*}

where $\mathcal{M}_{i}f(x):=\chi_{[s_i,s_{i+1}]}(x)\mathcal{M}_{\gamma}^{P}f(x)$. To complete the proof, it suffices to demonstrate that

\begin{align*} \|\mathcal{M}_{i}f\|_p\leqslant C_{d}\|f\|_{p}. \end{align*}

By Lemma 4.1, there exists a pair $(m_i,s)$ such that the following holds for $[s_{i},s_{i+1}]$:

\begin{align*} {\sup_{x_1\in[s_i,s_{i+1}]}{\frac{|P(x_1)|}{|x_1-s|^{m_{i}}}}}\sim_d{\inf_{x_1\in[s_i,s_{i+1}]} \frac{|P(x_1)|}{|x_1-s|^{m_{i}}}}. \end{align*}

Denote that $g_s(x_1,x_2):=f(x_1+s ,x_2)$ and consider the estimate

\begin{align*} \|\mathcal{M}_{i}f\|_p^p=\int_{s_i-s}^{s_{i+1}-s}\int_{\mathbb{R}} \bigg(\sup_{r \gt 0}\frac{1}{r}\int_0^{r}{|g_s(x_1-t,x_2-P(x_1+s)\gamma(t))|}dt\bigg)^p\text{d}x_2\text{d}x_1. \end{align*}

By applying Proposition 2.2, we can reduce matters to $|x_1|\sim 2^{\ell}$:

(4.3)\begin{align} \bigg\|\sup_{j\in \mathbb{Z}}|\mathcal{P}_j^{\ell}g_s|\bigg\|_{p}\leqslant C_d \|f\|_{p}, \end{align}

where $\mathcal{P}_{j}^{\ell}g_s(x)$ is defined as

\begin{align*} \mathcal{P}_{j}^{\ell}g_s(x):=\chi_{I_{\ell}}(x_1)\psi_{j+4}^c(x_1)\int {g_s(x_1-t,x_2-P(x_1+s)\gamma(t))}\varphi_j(t)\text{d}t, \end{align*}

for $\ell$ such that $[2^{\ell-1},2^{\ell+1}]\cap [s_i-s,s_{i+1}-s]\neq \emptyset$. To prove (4.3), it is enough to check the hypothesis of Remark 1.1:

\begin{align*} \frac{\sup_{x}{|P(x+s)|}}{\inf_{x}|P(x+s)|}\lesssim_d \frac{2^{(\ell+1)m_i}}{2^{(\ell-1)m_i}}\lesssim_d 1~\text{for}~|x|\in [2^{\ell-1},2^{\ell+1}], \end{align*}

where $1\leqslant m_i\leqslant d$. This implies the conclusion.

Acknowledgements

J. Kim was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea under grant NRF-2015R1A2A2A01004568. J. Oh was supported by the National Research Foundation of Korea under grant NRF-2020R1F1A1A01048520 and is currently supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2024-00461749).

References

Bateman, M., Single annulus Lp estimates for Hilbert transforms along vector fields, Rev. Mat. Iberoam. 29(3): (2013), 10211069.CrossRefGoogle Scholar
Bateman, M. and Thiele, C., Lp estimates for the Hilbert transforms along a one-variable vector field, Anal. PDE 6(7): (2013), 15771600.CrossRefGoogle Scholar
Beltran, D., Hickman, J. and Sogge, C. D., Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds, Anal. PDE 13(2): (2020), 403433.CrossRefGoogle Scholar
Bennett., J. M., Hilbert transforms and maximal functions along variable flat curves, Trans. Amer. Math. Soc. 354(12): (2002), 48714892.CrossRefGoogle Scholar
Bourgain, J., A remark on the maximal function associated to an analytic vector field In Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987), Volume 137, , (Cambridge Univ. Press, Cambridge, 1989) London Math. Soc. Lecture Note Ser..Google Scholar
Córdoba, A. and Rubio de Francia, J. L., Estimates for Wainger’s singular integrals along curves, Rev. Mat. Iberoamericana 2(1-2): (1986), 105117.CrossRefGoogle Scholar
Carbery, A., Christ, M., Vance, J., Wainger, S. and Watson, D. K., Operators associated to flat plane curves: Lp estimates via dilation methods, Duke Math. J. 59(3): (1989), 675700.CrossRefGoogle Scholar
Carbery, A., Seeger, A., Wainger, S. and Wright, J., Classes of singular integral operators along variable lines, J. Geom. Anal. 9(4): (1999), 583605.CrossRefGoogle Scholar
Carbery, A., Wainger, S. & Wright, J.. Hilbert transforms and maximal functions along variable flat plane curves, The Journal of Fourier Analysis and Applications, (1995), 119139.Google Scholar
Carbery, A., Wainger, S. and Wright, J., Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group, J. Amer. Math. Soc. 8(1): (1995), 141179.CrossRefGoogle Scholar
Carlsson, H., Christ, M., Córdoba, A., Duoandikoetxea, J., Rubio de Francia, J. L., Vance, J., Wainger, S. and Weinberg, D., Lp estimates for maximal functions and Hilbert transforms along flat convex curves in R2, Bull. Amer. Math. Soc. (N.S.) 14(2): (1986), 263267.CrossRefGoogle Scholar
Cho, Y. -K., Hong, S., Kim, J. and Woo Yang, C., Multiparameter singular integrals and maximal operators along flat surfaces, Rev. Mat. Iberoam. 24(3): (2008), 10471073.CrossRefGoogle Scholar
Guo, S., Hickman, J., Lie, V. and Roos, J., Maximal operators and Hilbert transforms along variable non-flat homogeneous curves, Proc. Lond. Math. Soc. (3) 115(1): (2017), 177219.CrossRefGoogle Scholar
Kim, J., Hilbert transforms along curves in the Heisenberg group, Proc. London Math. Soc. (3) 80(3): (2000), 611642.CrossRefGoogle Scholar
Kim, J., Lp-estimates for singular integrals and maximal operators associated with flat curves on the Heisenberg group, Duke Math. J. 114(3): (2002), 555593.CrossRefGoogle Scholar
Kim, J., Maximal average along variable lines, Israel J. Math. 167 (2008), 113.CrossRefGoogle Scholar
Lacey, M. and Li, X., On a conjecture of E. M. Stein on the Hilbert transform on vector fields, Mem. Amer. Math. Soc. 205(965): (2010), .Google Scholar
Lacey, M. T. and Li, X., Maximal theorems for the directional Hilbert transform on the plane, Trans. Amer. Math. Soc. 358(9): (2006), 40994117.CrossRefGoogle Scholar
Lie, V., A unified approach to three themes in harmonic analysis (I & II): (I) The linear Hilbert transform and maximal operator along variable curves; (II) Carleson type operators in the presence of curvature, Adv. Math. 437 (2024), .Google Scholar
Liu, N., Song, L. and Yu, H., Lp bounds of maximal operators along variable planar curves in the Lipschitz regularity, J. Funct. Anal. 280(5): (2021), .CrossRefGoogle Scholar
Mockenhaupt, G., Seeger, A. and Sogge, C. D., Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. of Math. (2) 136(1): (1992), 207218.CrossRefGoogle Scholar
Nagel, A., Stein, E. M. and Wainger, S., Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75(3): (1978), 10601062.CrossRefGoogle ScholarPubMed
Seeger, A. and Wainger, S., Singular Radon transforms and maximal functions under convexity assumptions, Rev. Mat. Iberoamericana 19(3): (2003), 10191044.CrossRefGoogle Scholar
Stein, E. M. and Wainger, S., Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84(6): (1978), 12391295.CrossRefGoogle Scholar