Published online by Cambridge University Press: 19 April 2022
In 1991, Chicone and Jacobs showed the equivalence between the computation of the first-order Taylor developments of the Lyapunov constants and the developments of the first Melnikov function near a non-degenerate monodromic equilibrium point, in the study of limit cycles of small-amplitude bifurcating from a quadratic centre. We show that their proof is also valid for polynomial vector fields of any degree. This equivalence is used to provide a new lower bound for the local cyclicity of degree six polynomial vector fields, so $\mathcal {M}(6) \geq 44$. Moreover, we extend this equivalence to the piecewise polynomial class. Finally, we prove that $\mathcal {M}^{c}_{p}(4) \geq 43$ and $\mathcal {M}^{c}_{p}(5) \geq 65.$