No CrossRef data available.
Article contents
Linear diophantine equations with cyclic coefficient matrices and its applications to Riemann surfaces
Published online by Cambridge University Press: 20 January 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let co, c1, …, cn-1 be the nonzero complex numbers and let C = (cu+1,v+1) = (cn+u-v), O≦u,v≦n — 1, be a cyclic matrix, where n + u — v is taken modulo n. In this paper we shall give the solution of the linear equations
where Lu (0≦u≦n —1) is a fixed complex number. In Theorem 1 weshall give a necessary and sufficient condition for (1) to have an integral solution.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 28 , Issue 3 , October 1985 , pp. 369 - 380
- Copyright
- Copyright © Edinburgh Mathematical Society 1985
References
REFERENCES
1.Carlitz, L. and Olson, F. R., Maillet's determinant, Proc. Amer. Math. Soc. (1955), 265–269.Google Scholar
2.Carlitz, L., A generalization of Maillet's determinant and a bound for the first factor of the class number, Proc. Amer. Math. Soc. 12 (1961), 256–261.Google Scholar
3.Harvey, W. J., Cyclic groups of automorphisms of a compact Riemann surface, Quart, J. Math. Oxford 17 (1966), 86–97.CrossRefGoogle Scholar
4.Harvey, W. J., On branch loci in Teichmuller space, Trans. Amer. Math. Soc. 153 (1971), 387–399.Google Scholar
5.Kato, T., Non-hyperelliptic Weierstrass points of maximal weight, Math. Ann. 239 (1979, 141–147.CrossRefGoogle Scholar
6.Lewittes, J., Automorphisms of compact Riemann surfaces, Amer. J. Math. 84 (1963), 734–752.CrossRefGoogle Scholar
7.Lloyd, E. K., Some combinatorial problems in the theory of Riemann surface transformation groups (Ph.D. Thesis, Birmingham, 1967).Google Scholar
8.Macbeath, A. M., On a curve of genus 7, Proc. London Math. Soc. 15 (1965), 527–542.CrossRefGoogle Scholar
9.Maclachlan, C., Weierstrass points on compact Riemann surfaces, J. London Math. Soc. 3 (1971), 722–724.CrossRefGoogle Scholar
10.Metsãnkylã, T., üiber den ersten Faktor der Klassenzahl des Kreiskõrpers, Ann, Acad. Sci. Fenn. AI 416, (1967).Google Scholar
11.Ore, O., Some studies on cyclic determinants, Duke Math. J. 18 (1951), 343–354.CrossRefGoogle Scholar
12.Takioawa, N., Weierstrass points on compact Riemann surfaces with nontrivial automorphisms, J. Math. Soc. Japan 33 (1981), 235–246.Google Scholar
You have
Access