Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T04:39:20.887Z Has data issue: false hasContentIssue false

Inversion is Possible in Groups with no Periodic Automorphisms

Published online by Cambridge University Press:  05 June 2015

Martin R. Bridson
Affiliation:
Mathematical Institute, University of Oxford, Andrew Wiles Building, Oxford OX2 6GG, UK ([email protected])
Hamish Short
Affiliation:
Aix Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France ([email protected])

Abstract

There exist infinite finitely presented torsion-free groups G such that Aut(G) and Out(G) are torsion free but G has an automorphism sending some non-trivial element to its inverse.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alonso, J., Brady, T., Cooper, D., Ferlini, V., Lustig, M., Mihalik, M., Shapiro, M. and Short, H., Notes on word hyperbolic groups, in Group theory from a geometrical viewpoint (ed. Ghys, E., Haefliger, A. and Verjovsky, A.), pp. 363 (World Scientific, 1991).Google Scholar
2. Belolipetsky, M. and Lubotzky, A., Finite groups and hyperbolic manifolds, Invent. Math. 162 (2005), 459472.Google Scholar
3. Bridson, M. R. and Haefliger, A., Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften, Volume 319 (Springer, 1999).Google Scholar
4. Bridson, M. R. and Short, H., A complete embedding theorem for torsion-free groups, in preparation.Google Scholar
5. Gromov, M., Hyperbolic groups, in Essays in group theory (ed. Gersten, S. M.), Mathematical Sciences Research Institute Publications, Volume 8, pp. 75263 (Springer, 1987).CrossRefGoogle Scholar
6. Hegarty, P. and MacHale, D., Minimal odd order automorphism groups, J. Group Theory 13 (2010), 243255.CrossRefGoogle Scholar
7. Heineken, H. and Liebeck, H., On p-groups with odd order automorphism groups, Arch. Math. 24 (1973), 464471.CrossRefGoogle Scholar
8. Kojima, S., Isometry transformations of hyperbolic 3-manifolds, Topol. Applic. 29 (1988), 297307.CrossRefGoogle Scholar
9. Long, D. D. and Reid, A. W., On asymmetric hyperbolic manifolds, Proc. Camb. Phil. Soc. 138 (2005), 301306.Google Scholar
10. Magnus, W., Karrass, A. and Solitar, D., Combinatorial group theory: presentations of groups in terms of generators and relations (Interscience Publishers, New York, 1966).Google Scholar
11. Mihalik, M. L. and Towle, W., Quasiconvex subgroups of negatively curved groups, J. Pure Appl. Alg. 95 (1994), 297301.CrossRefGoogle Scholar
12. C. F., Miller III and Schupp, P. E., Embedding into Hopfian groups, J. Alg. 17 (1971), 171176.Google Scholar
13. Sela, Z., Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II, Geom. Funct. Analysis 7 (1997), 561593.CrossRefGoogle Scholar