Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T02:10:05.909Z Has data issue: false hasContentIssue false

Hyperbolic travelling fronts

Published online by Cambridge University Press:  20 January 2009

K. P. Hadeler
Affiliation:
Lehrstuhl für BiomathematikUniversität Tübingenauf der Morgenstelle 10D-7400 TübingenWest Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since the work of R. A. Fisher [2] and Kolmogorov, Petrovskij and Piskunov [7] (see [6] for further references) the problem of travelling fronts in reaction–diffusion equations has been extensively studied. For the equation

with F(0) = F(1) = 0 a travelling front is a solution

where the function of one variable φ is decreasing and satisfies φ(−∞) = 1, φ(+∞) = 0. The function φ describes the shape of the front and the constant c is the speed of propagation. There are two main types of the problem. In the all-positive case, where the function F satisfies

there is a half-line [c0, ∞), c0>0, of speeds. For each c∈[c0, ∞) there is, up to translation, a unique travelling front. Fronts for different c can be distinguished by the rate of decay towards +∞. In the threshold case, where F has the property, for some λ∈(0, 1),

there is a unique speed c0 with a travelling front, which is unique up to translation. In this case the sign of c0 is determined by the sign of the integral

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1988

References

REFERENCES

1.Dunbar, S. and Othmer, H., On a nonlinear hyperbolic equation describing transmission lines, cell movement, and branching random walks, in Nonlinear oscillations in biology and chemistry, Othmer, H. G. (Ed.) (Lecture Notes in Biomathematics, Springer-Verlag, 1986).Google Scholar
2.Fisher, R. A., The advance of advantageous genes, Ann. of Eugenics 7 (1937), 355369.CrossRefGoogle Scholar
3.Hadeler, K. P. and Rothe, F., Travelling fronts in nonlinear diffusion equations, J. Math. Biol. 2 (1975), 251263.CrossRefGoogle Scholar
4.Hadeler, K. P., Travelling fronts and free boundary value problems, in Numerical treatment of free boundary value problems (Oberwolfach Conference 1980), Albrecht, J., Collatz, L. and Hoffmann, K. H. (Eds.) (Birkhäuser-Verlag, 1981), 90107.Google Scholar
5.Hadeler, K. P., Free boundary problems in biological models, in Free boundary problems: Theory and applications, Vol. II (Montecatini Conference 1981), Fasano, A. and Primicerio, M. (Eds.) (Pitman, 1983), 664671.Google Scholar
6.Hadeler, K. P., Spread and age structure in epidemic models, in Perspectives in mathematics, Jäger, W. et al. (Eds.) (Birkhäuser-Verlag, 1984).Google Scholar
7.Kolmogorov, A., Petrovskij, I. and Piskunov, N., Etude de l'equation de la diffusion avec croissance de la quantité de la matière et son application a une problème biologique, Bull. Univ. Moscou, Ser. Int., Sec. A1, 6 (1937), 125.Google Scholar
8.McKean, H. P., Application of Brownian motion to the equation of Kolmogorov–Petrovskij–Piskunov, Comm. Pure Appl. Math. 28 (1975), 323331.CrossRefGoogle Scholar
9.Engler, H., Relations between traveling wave solutions of quasilinear parabolic equations, Proc. Amer. Math. Soc. 93 (1985), 297302.CrossRefGoogle Scholar
10.Smoller, J., Shock waves and reaction diffusion equations (Springer-Verlag, 1982).Google Scholar