Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T10:19:41.975Z Has data issue: false hasContentIssue false

Growth and oscillation theory of non-homogeneous linear differential equations

Published online by Cambridge University Press:  20 January 2009

Gary G. Gundersen
Affiliation:
Department of Mathematics, University of New Orleans, New Orleans, LA 70148, USA ([email protected]; [email protected]; [email protected])
Enid M. Steinbart
Affiliation:
Department of Mathematics, University of New Orleans, New Orleans, LA 70148, USA ([email protected]; [email protected]; [email protected])
Shupei Wang
Affiliation:
Department of Mathematics, University of New Orleans, New Orleans, LA 70148, USA ([email protected]; [email protected]; [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the growth and the frequency of zeros of the solutions of the differential equation f(n) + Pn–1 (z) f(n–1) + … + P0 (z) f = H (z), where P0 (z), P1(z), …, Pn–1(z) are polynomials with P0 (z) ≢ 0, and H (z) ≢ 0 is an entire function of finite order.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1. Gao, S.-A., On the complex oscillation of solutions of nonhomogeneous linear differential equations with polynomial coefficients, Comm. Math. Univ. Sancti Pauli 38 (1989), 1120.Google Scholar
2. Gundersen, G., Finite order solutions of second order linear differential equations, Trans. Am. Math. Soc. 305 (1988), 415429.CrossRefGoogle Scholar
3. Gundersen, G., Steinbart, E. and Wang, S., The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Am. Math. Soc. 350 (1998), 12251247.CrossRefGoogle Scholar
4. Gundersen, G., Steinbart, E. and Wang, S., Solutions of nonhomogeneous linear dif-ferental equations with exceptionally few zeros. Ann. Acad. Sci. Fenn. Ser. A I Math. 23 (1998), 429452.Google Scholar
5. Hayman, W. K., Meromorphic functions (Clarendon Press, Oxford, 1964).Google Scholar
6. Helmrath, W. and Nikolaus, J., Ein elementarer Beweis bei der Anwendung der Zentralindexmethode auf Differentialgleichungen, Complex Variables 3 (1984), 387396.Google Scholar
7. Jank, G. and Volkmann, L., Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen (Birkhäuser, Basel, 1985).CrossRefGoogle Scholar
8. Laine, I., Nevanlinna theory and complex differential equations (Walter de Gruyter, Berlin, 1993).CrossRefGoogle Scholar
9. Valiron, G., Lectures on the general theory of integral functions (translated by Collingwood, E. P.) (Chelsea, New York, 1949).Google Scholar
10. Wittich, H., Über das Anwachsen der Lösungen linearer Differentialgleichungen, Math. Ann. 124 (1952), 277288.CrossRefGoogle Scholar
11. Wittich, H., Neuere Untersuchungen über eindeutige analytische Functionen, 2nd edn (Springer, Berlin, 1968).CrossRefGoogle Scholar