Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T15:52:49.832Z Has data issue: false hasContentIssue false

Group rings whose torsion units form a subgroup*

Published online by Cambridge University Press:  20 January 2009

Sônia P. Coelho
Affiliation:
Instituto de Matemática e EstatistícaUniversidade de São PauloCaixa Postal 20570—Ag Iguatemi 01452—990—São Paulo—Brasil
C. Polcino Milies
Affiliation:
Instituto de Matemática e EstatistícaUniversidade de São PauloCaixa Postal 20570—Ag Iguatemi 01452—990—São Paulo—Brasil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, we determine fields K and groups G that are either nilpotent or FC and such that the set of torsion elements of the group ring KG forms a subgroup.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1994

References

REFERENCES

1.Coelho, S. P., A note on central idempotents in group rings, Proc. Edinburgh Math. Soc. 30 (1987), 6972.CrossRefGoogle Scholar
2.Coelho, S. P. and Milies, C. Polcino, A note on central idempotents in group rings II, Proc. Edinburgh Math. Soc. 31 (1988), 211215.CrossRefGoogle Scholar
3.Parmenter, M. M. and Milies, C. Polcino, Group rings whose torsion units form a nilpotent or FC group, Proc. Amer. Math. Soc. 68 (1978), 247248.Google Scholar
4.Milies, C. Polcino, Group rings whose torsion units form a subgroup II, Comm. Algebra 9 (1981), 699712.CrossRefGoogle Scholar
5.Robinson, D. J. S., A Course in the Theory of Groups (Springer-Verlag, New York, 1982).CrossRefGoogle Scholar
6.Rotman, J. J., The Theory of Groups: An Introduction, 2nd ed. (Allyn and Bacon, Boston, 1973).Google Scholar
7.Sehgal, S. K., Topics in Group Rings (Marcel Dekker, New York, 1978).Google Scholar