Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T13:45:07.607Z Has data issue: false hasContentIssue false

Generation of relative commutator subgroups in Chevalley groups

Published online by Cambridge University Press:  27 October 2015

R. Hazrat
Affiliation:
Centre for Research in Mathematics, University of Western Sydney, Australia ([email protected])
N. Vavilov
Affiliation:
Department of Mathematics and Mechanics, Saint Petersburg State University, St Petersburg, Russia ([email protected])
Z. Zhang
Affiliation:
Department of Mathematics, Beijing Institute of Technology, Beijing, People’s Republic of China ([email protected])

Abstract

Let Φ be a reduced irreducible root system of rank greater than or equal to 2, let R be a commutative ring and let I, J be two ideals of R. In the present paper we describe generators of the commutator groups of relative elementary subgroups [E(Φ,R,I),E(Φ,R,J)] both as normal subgroups of the elementary Chevalley group E(Φ,R), and as groups. Namely, let xα(ξ), α ∈ Φ ξ ∈ R, be an elementary generator of E(Φ,R). As a normal subgroup of the absolute elementary group E(Φ,R), the relative elementary subgroup is generated by xα(ξ), α ∈ Φ, ξ ∈ I. Classical results due to Stein, Tits and Vaserstein assert that as a group E(Φ,R,I) is generated by zα(ξ,η), where α ∈ Φ, ξ ∈ I, η ∈ R. In the present paper, we prove the following birelative analogues of these results. As a normal subgroup of E(Φ,R) the relative commutator subgroup [E(Φ,R,I),E(Φ,R,J)] is generated by the following three types of generators: (i) [xα(ξ),zα(ζ,η)], (ii) [xα(ξ),x(ζ)] and (iii) xα(ξζ), where α ∈ Φ, ξ ∈ I, ζ ∈ J, η ∈ R. As a group, the generators are essentially the same, only that type (iii) should be enlarged to (iv) zα(ξζ,η). For classical groups, these results, with many more computational proofs, were established in previous papers by the authors. There is already an amazing application of these results in the recent work of Stepanov on relative commutator width.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abe, E., Chevalley groups over local rings, Tohoku Math. J. 21(3) (1969), 474494.CrossRefGoogle Scholar
2. Abe, E., Normal subgroups of Chevalley groups over commutative rings, in Algebraic K-theory and algebraic number theory, Contemporary Mathematics, Volume 83, pp. 117 (American Mathematical Society, Providence, RI, 1989).Google Scholar
3. Apte, H. and Stepanov, A., Local-global principle for congruence subgroups of Chevalley groups, Cent. Eur. J. Math. 12(6) (2014), 801812.Google Scholar
4. Bass, H., K-theory and stable algebra, Publ. Math. IHES 22 (1964), 560.CrossRefGoogle Scholar
5. Carter, R. W., Simple groups of Lie type (Wiley, 1972).Google Scholar
6. Costa, D. L. and Keller, G. E., Radix redux: normal subgroups of symplectic groups, J. Reine Angew. Math. 427 (1992), 51105.Google Scholar
7. Costa, D. L. and Keller, G. E., On the normal subgroups of G2(A), Trans. Am. Math. Soc. 351(12) (1999), 50515088.Google Scholar
8. Hazrat, R. and Vavilov, N., K 1 of Chevalley groups are nilpotent, J. Pure Appl. Alg. 179 (2003), 99116.Google Scholar
9. Hazrat, R. and Vavilov, N., Bak’s work on the K-theory of rings, J. K-Theory 4 (2009), 165.CrossRefGoogle Scholar
10. Hazrat, R. and Zhang, Z., Generalized commutator formulas, Commun. Alg. 39 (2011), 14411454.CrossRefGoogle Scholar
11. Hazrat, R. and Zhang, Z., Multiple commutator formula, Israel J. Math. 195 (2013), 481505.Google Scholar
12. Hazrat, R., Petrov, V. and Vavilov, N., Relative subgroups in Chevalley groups, J.K-Theory 5 (2010), 603618.Google Scholar
13. Hazrat, R., Stepanov, A., Vavilov, N. and Zhang, Z., The yoga of commutators, J. Math. Sci. 179(6) (2011), 662678.Google Scholar
14. Hazrat, R., Vavilov, N. and Zhang, Z., Relative unitary commutator calculus and applications, J. Alg. 343 (2011), 107137.Google Scholar
15. Hazrat, R., Vavilov, N. and Zhang, Z., Multiple commutator formulas for unitary groups, Preprint (arxiv.org/abs/1205.6866; 2012).Google Scholar
16. Hazrat, R., Vavilov, N. and Zhang, Z., The commutators of classical groups, ICTP Preprint (2012).Google Scholar
17. Hazrat, R., Stepanov, A., Vavilov, N. and Zhang, Z., Commutator width in Chevalley groups, Note Mat. 33(1) (2013), 139170.Google Scholar
18. Hazrat, R., Vavilov, N. and Zhang, Z., Relative commutator calculus in Chevalley groups, J. Alg. 385 (2013), 262293.Google Scholar
19. Hazrat, R., Stepanov, A., Vavilov, N. and Zhang, Z., The yoga of commutators, further applications, J. Math. Sci. 200(6) (2014), 742768.Google Scholar
20. Hazrat, R., Stepanov, A., Vavilov, N. and Zhang, Z., General multiple commutator formula, In preparation (2014).Google Scholar
21. Hong You, On subgroups of Chevalley groups which are generated by commutators, J. Northeast Normal Univ. 2 (1992), 913.Google Scholar
22. Mason, A. W., A note on subgroups of GL(n, A) which are generated by commutators, J. Lond. Math. Soc. 11 (1974), 509512.Google Scholar
23. Mason, A. W., On subgroups of GL(n, A) which are generated by commutators II, J. Reine Angew. Math. 322 (1981), 118135.Google Scholar
24. Mason, A. W., A further note on subgroups of GL(n, A) which are generated by commutators, Arch. Math. 37(5) (1981), 401405.Google Scholar
25. Mason, A. W. and Stothers, W. W., On subgroups of GL(n, A) which are generated by commutators, Invent. Math. 23 (1974), 327346.Google Scholar
26. Stein, M. R., Generators, relations and coverings of Chevalley groups over commutative rings, Am. J. Math. 93(4) (1971), 9651004.CrossRefGoogle Scholar
27. Steinberg, R., Lectures on Chevalley groups, Yale University, 1967.Google Scholar
28. Stepanov, A., Structure of Chevalley groups over rings via universal localization, Preprint (arxiv.org/abs/1303.6082; 2013).Google Scholar
29. Stepanov, A. and Vavilov, N., the length of commutators in Chevalley groups, Israel J. Math. 185 (2011), 253276.Google Scholar
30. Taddei, G., Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau, in Applications of algebraic K-theory to algebraic geometry and number theory, part II, Contemporary Mathematics, Volume 55, pp. 693710 (American Mathematical Society, Providence, RI, 1986).CrossRefGoogle Scholar
31. Tits, J., Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris Sér. I 283 (1976), 693695.Google Scholar
32. Vaserstein, L. N., On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. 36(5) (1986), 219230.Google Scholar
33. Vavilov, N., Structure of Chevalley groups over commutative rings, in Proc. Conf. Nonas-sociative Algebras and Related Topics, Hiroshima, 1990, pp. 219335 (World Scientific, 1991).Google Scholar
34. Vavilov, N. and Plotkin, E., Chevalley groups over commutative rings, I: elementary calculations, Acta Appl. Math. 45 (1996), 73113.Google Scholar
35. Vavilov, N. A. and Stepanov, A. V., Standard commutator formula, Vestn. St. Peters burg State Univ. Ser. I 41(1) (2008), 58.Google Scholar
36. Vavilov, N. A. and Stepanov, A. V., Standard commutator formula, revisited, Vestn. St. Petersburg State Univ. Ser. I 43(1) (2010), 1217.Google Scholar