No CrossRef data available.
Article contents
Finite Groups Whose Common-Divisor Graph is Regular
Published online by Cambridge University Press: 15 February 2018
Abstract
Let G be a finite group, and write cd (G) for the set of degrees of irreducible characters of G. The common-divisor graph Γ(G) associated with G is the graph whose vertex set is cd (G)∖{1} and there is an edge between distinct vertices a and b, if (a, b) > 1. In this paper we prove that if Γ(G) is a k-regular graph for some k ⩾ 0, then for the solvable groups, either Γ(G) is a complete graph of order k + 1 or Γ(G) has two connected components which are complete of the same order and for the non-solvable groups, either k = 0 and cd(G) = cd(PSL2(2f)), where f ⩾ 2 or Γ(G) is a 4-regular graph with six vertices and cd(G) = cd(Alt7) or cd(Sym7).
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Edinburgh Mathematical Society 2018