Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T18:51:03.191Z Has data issue: false hasContentIssue false

Excision in Banach simplicial and cyclic cohomology

Published online by Cambridge University Press:  20 January 2009

Zinaida A. Lykova
Affiliation:
Department of Mathematics and Statistics, Flyde College, Lancaster University, Lancaster LA1 4YF, England E-mail address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that, for every extension of Banach algebras 0 → B →A → D → 0 such that B has a left or right bounded approximate identity, the existence of an associated long exact sequence of Banach simplicial or cyclic cohomology groups is equivalent to the existence of one for homology groups. It follows from the continuous version of a result of Wodzicki that associated long exact sequences exist. In particular, they exist for every extension of C*-algebras.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1998

References

REFERENCES

1.Anderson, J. H., Commutators of compact operators, J. Reine Angew. Math. 291 (1977), 128132.Google Scholar
2.Banica, C. and Stanasila, O., Méthodes algébriques dans la théorie globale des espaces complexes (Gauthier-Villars, Paris, 1977).Google Scholar
3.Bourbaki, N., Elements of Mathematics, General Topology, Part 1 (Addison-Wesley Publishing Company, London, 1966).Google Scholar
4.Brodzki, J., Derivations, semidirect products and reduced cyclic cohomology, J. Reine Angew. Math. 436 (1993), 177195.Google Scholar
5.Brodzki, J., An Introduction to K-theory and Cyclic Cohomology, Preprint M96/9, University of Exeter, U.K., 113pp.Google Scholar
6.Christensen, E. and Sinclair, A. M., On the vanishing of Hn(A, A*) for certain C*-algebras, Pacific J. Math. 137 (1989), 5563.CrossRefGoogle Scholar
7.Connes, A., Non-commutative differential geometry, Publ. Math. I.H.E.S. 62 (1986), 41144.CrossRefGoogle Scholar
8.Connes, A., Noncommutative Geometry (Academic Press, London, 1994).Google Scholar
9.Cuntz, J., On excision in bivariant periodic cyclic cohomology of topological algebras, Heidelberg preprint, 1995.Google Scholar
10.Cuntz, J. and Quillen, D., On excision in periodic cyclic cohomology, I and II, C. R. Acad. Sci. Paris 317 (1993), Serie I, 917922; 318 (1994), Serie I, 1112.Google Scholar
11.Diximer, J., Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1969).Google Scholar
12.Dixon, P. G., Left approximate identities in algebras of compact operators on Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 169175.CrossRefGoogle Scholar
13.Edwards, R. E., Functional Analysis, Theory and Applications (Holt, Rinehart and Winston, N.Y., 1965).Google Scholar
14.Fack, T., Finite sums of commutators in C*-algebras, Ann. Inst. Fourier (Grenoble) 32 (1982), 129137.CrossRefGoogle Scholar
15.Gronbaek, N., Morita equivalence for Banach algebras, J. Pure Appl. Algebra 99 (1995), 189219.CrossRefGoogle Scholar
16.Gronbaek, N., Johnson, B. E. and Willis, G. A., Amenability of Banach algebras of compact operators, Israel J. Math. 87 (1994), 289324.CrossRefGoogle Scholar
17.Haagerup, U., All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305319.CrossRefGoogle Scholar
18.Halmos, P. R., Commutators of operators, Amer. J. Math. 74 (1952), 237240; 76 (1954), 191198.CrossRefGoogle Scholar
19.Helemskii, A. Ya., The Homology of Banach and Topological Algebras (Moscow Univ. Press, Moscow, 1986, in Russian; Kluwer Academic Publishers, Dordrecht, 1989, in English.)Google Scholar
20.Helemskii, A. Ya., Banach cyclic (co)homology and the Connes-Tsygan exact sequence, J. London Math. Soc. (2) 46 (1992), 449462.CrossRefGoogle Scholar
21.Johnson, B. E., Cohomology of Banach algebras (Mem. Amer. Math. Soc. 127, 1972).Google Scholar
22.Loday, J.-L., Cyclic Homology (Springer Verlag, Berlin, 1992).CrossRefGoogle Scholar
23.Lykova, Z. A., Relative cohomology of Banach algebras, MSRI Preprint 1995–091, Berkeley, U.S.A., 24pp.Google Scholar
24.Maclane, S., Homology (Springer Verlag, Berlin, and Academic Press, New York, 1963).CrossRefGoogle Scholar
25.Murphy, G. J., C*-algebras and Operator Theory (Academic Press, London, 1990).Google Scholar
26.Palmer, Th. W., Banach Algebras and The General Theory of *-Algebras Volume I: Algebras and Banach Algebras (Cambridge University Press, Cambridge, 1994).CrossRefGoogle Scholar
27.Sakai, S., C*-algebras and W*-algebras (Springer Verlag, Berlin, 1971).Google Scholar
28.Wodzicki, M., Vanishing of cyclic homology of stable C*-algebras, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 329334.Google Scholar
29.Wodzicki, M., The long exact sequence in cyclic homology associated with an extension of algebras, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 399403.Google Scholar
30.Wodzicki, M., Excision in cyclic homology and rational algebraic K-theory, Ann. Math. 129(1989), 591639.CrossRefGoogle Scholar