No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
Let $G$ be a locally compact group, $A$ a continuous trace $C^*$-algebra, and $\alpha$ a pointwise unitary action of $G$ on $A$. It is a result of Olesen and Raeburn that if $A$ is separable and $G$ is second countable, then the crossed product $A\times_\alpha G$ has continuous trace. We present a new and much more elementary proof of this fact. Moreover, we do not even need the separability assumptions made on $A$ and $G$.
AMS 2000 Mathematics subject classification: Primary 46L55