Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T18:51:50.720Z Has data issue: false hasContentIssue false

The countable neighbourhood property and tensor products

Published online by Cambridge University Press:  20 January 2009

José Bonet
Affiliation:
Departamento De Matematicas, E.T.S.I. Industriales, Universidad Politecnica, C. de Vera, Valencia, Spain
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article is intended to enlarge the study of spaces satisfying the countable neighbourhood property and to clarify the incidence of this property in the stability of some locally convex properties of tensor products.

We shall use the standard notations of locally convex spaces as in [17] and [18]. The word space will always mean separated locally convex space. If (£, t) is a space, the set of all continuous seminorms on it will be denoted by cs(E). The linear hull and the absolutely convex hull of a subset C of a space will be written lin(C) and г(C) respectively.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1985

References

REFERENCES

1.Bierstedt, K., Meise, R., and Summers, W. H., A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107160.CrossRefGoogle Scholar
2.Bonet, J., A projective description of weighted inductive limits of vector valued continuous functions, Collect. Math. 34 (1983), 115124.Google Scholar
3.Bonet, J. and Perez Carreras, P., Remarks on the stability of barrelled type topologies, Bull. Soc. Roy. Sci. Liège 52 (1983), 313318.Google Scholar
4.Bonet, J. and Perez Carreras, P., Some results on barelledness in projective tensor products, Math. Z. 185 (1984), 333338.CrossRefGoogle Scholar
5.Colombeau, J. F., Infinite dimensional C mapping with a given sequence of derivatives at a given point, J. Math. Anal. Appl. 71 (1979), 95104.CrossRefGoogle Scholar
6.Colombeau, J. F. and Mujica, J., Existence of holomorphic mappings with prescribed asymptotic expansion at a given set of points in infinite dimensions, Nonlinear Analysis, Theory, Methods and Applications 5 (1981), 149156.Google Scholar
7.Defant, A. and Govaerts, W., Tensor products and spaces of vector valued continuous functions (preprint, 1983).Google Scholar
8.Defant, A. and Govaerts, W., Bornological and ultrabornological spaces of type C(X, F) and EεF, Math. Ann. 268 (1984), 347355.Google Scholar
9.De Wilde, M., Closed graph theorems and webbed spaces (London, Pitman, 1978).Google Scholar
10.Dierolf, S., On spaces of continuous linear mappings between locally convex spaces (Habilitationsschrift, Munich, 1983).Google Scholar
11.Floret, K., Some aspects of the theory of locally convex inductive limits, Functional Analysis, Surveys and Recent Results II, Bierstedt, K., Fuchsteiner, B. (ed.) (Amsterdam-New York- Oxford, North-Holland, Mathematics Studies 38, 1980).Google Scholar
12.Grothendieck, A., Sur les espaces (F) et (DF), Summa Brasil Math. 3 (1954), 57123.Google Scholar
13.Grothendihck, A., Produits tensoriels topologiques et espaces nucléaires (Mem. Amer. Math. Soc. 16, 1955).Google Scholar
14.Hollstein, R., (DCF)-Raüme und lokalkonvexe Tensorproducte, Arch. Math. 29 (1977), 524531.CrossRefGoogle Scholar
15.Hollstein, R., Inductive limits and ε-tensor products, J. reine. angew Math. 319 (1980), 3862.Google Scholar
16.Hollstein, R., ⊗-sequences and inductive limits with local partition of the unity, Manuscripta Math. (to appear).Google Scholar
17.Jarchow, H., Locally convex spaces (Stuttgart, B. G. Teubner, 1981).CrossRefGoogle Scholar
18.Köthe, G., Topologocal vector spaces I and II (Berlin-Heidelberg-New York, Springer, 1969 and 1979).Google Scholar
19.Mazón, J. M., Some classes of locally convex spaces, Arch. Math. 38, (1982), 131137.CrossRefGoogle Scholar
20.Mendoza, J., Barrelledness on c o(E), Arch. Math. 40 (1983), 156158.Google Scholar
21.Mujica, J., Spaces of continuous functions with values in an inductive limit, Functional Analysis, Holomorphy and Approximation Theory (Lecture Notes in Pure and Applied Math. 83 1983).Google Scholar
22.Mujica, J., Domains of Holomorphy in DFC spaces, Functional Analysis, Holomorphy and Approximation Theory, Machado, (ed.), (Lecture Notes in Math, 843, Berlin-Heidelberg-New York Springer, 1981), 500533.Google Scholar
23.Roelcke, W., and Dierolf, S., On the three-space-problem for topological vector spaces, Collect. Math. 32 (1981), 1335.Google Scholar
24.Ruess, W., Compactness and collective compactness in spaces of compact operators, J. Math. Anal. Appl. 84 (1981), 400417.Google Scholar
25.Ruess, W., Weakly compact operators and (DF))-spaces, Pacific J. Math. 98 (1982), 419441.CrossRefGoogle Scholar
26.Valdivia, M., Sur certains hyperplans qui ne sont pas ultrabornologiques dans les espaces ultrabornologiques, C.R. Acad. Sc. Paris 284 A (1977), 935937.Google Scholar
27.Valdivia, M., A class of locally convex spaces without C-web, Ann. Inst. Fourier 32 (1982), 261269.Google Scholar
28.Valdivia, M., Topics in locally convex spaces (Amsterdam-New York-Oxford: North Holland, Mathematics Studies 67, 1982).CrossRefGoogle Scholar