Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T19:07:53.238Z Has data issue: false hasContentIssue false

Contributions to genetic algebras

Published online by Cambridge University Press:  20 January 2009

H. Gonshor
Affiliation:
Rutgers, The State University, New Jersey, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Etherington introduced certain algebraic methods into the study of population genetics (6). It was noted that algebras arising in genetic systems tend to have certain abstract properties and that these can be used to give elegant proofs of some classical stability theorems in population genetics (4, 5, 9, 10).

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1971

References

REFERENCES

(1) Andreoli, G., Algebre non associative e sistemi differenziali di Riccati in un problema di Genetica, Ann. Mat. Pura Appl. (4) 49 (1960), 97116.CrossRefGoogle Scholar
(2) Bertrand, M., Algèbres non associatives et algèbres génétiques (Mémorial des Sciences MathÉmatiques, fasc. 162, Gauthier-Villars, Paris, 1966).Google Scholar
(3) Etherington, I. M. H., Genetic algebras, Proc. Roy. Soc. Edinburgh 59 (1939), 242258.CrossRefGoogle Scholar
(4) Etherington, I. M. H., Commutative train algebras of ranks 2 and 3, J. London Math. Soc. 15 (1940), 136149; 20 (1945), 238. (5)CrossRefGoogle Scholar
(5) Etherington, I. M. H., Special train algebras, Quart. J. Math. Oxford Ser. (2) 12 (1941), 18.CrossRefGoogle Scholar
(6) Etherington, I. M. H., Non-associative algebra and the symbolism of genetics, Proc. Roy. Soc. Edinburgh Sect. B, 61 (1941), 2442.Google Scholar
(7) Etherington, I. M. H., Duplication of linear algebras, Proc. Edinburgh Math. Soc. (2) 6 (1941), 222230.CrossRefGoogle Scholar
(8) Etherington, I. M. H., Non-commutative train algebras of ranks 2 and 3, Proc. London Math. Soc. (2) 52 (1951), 241252.Google Scholar
(9) Gonshor, H., Special train algebras arising in genetics, Proc. Edinburgh Math. Soc. (2) 12 (1960), 4153.CrossRefGoogle Scholar
(10) Gonshor, H., Special train algebras arising in genetics II, Proc. Edinburgh Math. Soc. (2) 14 (1965) 333338.CrossRefGoogle Scholar
(11) Holgate, P., Genetic algebras associated with polyploidy, Proc. Edinburgh Math. Soc. (2) 15 (1966), 19.CrossRefGoogle Scholar
(12) Holgate, P., Sequences of powers in genetic algebras, J. London Math. Soc. 42 (1967), 489496.CrossRefGoogle Scholar
(13) Holgate, P., The genetic algebra of k linked loci, Proc. London Math. Soc. (3) 18 (1968), 315327.CrossRefGoogle Scholar
(14) Holgate, P., Interaction between migration and breeding studied by means of genetic algebras, J. Appl. Probability 5 (1968), 18.CrossRefGoogle Scholar
(15) Holgate, P., Jordan algebras arising in population genetics, Proc. Edinburgh Math. Soc. (2) 15 (1967), 291294.CrossRefGoogle Scholar
(16) Jacobson, N., Lie Algebras (Interscience Publishers, New York, 1962).Google Scholar
(17) Petersen, G., Regular matrix transformations (McGraw-Hill, London, 1966).Google Scholar
(18) Raffin, R., Axiomatisation des algèbres génÉtiques, Acad. Roy. Belgique Bull. Cl. Sci. (5) 37 (1951), 359366.Google Scholar
(19) Rhersøl, O., Genetic algebras studied recursively and by means of dififerential operators, Math. Scand. 10 (1962), 2544.CrossRefGoogle Scholar
(20) Schafer, R. D., Structure of genetic algebras, Amer. J. Math. 71 (1949), 121135.CrossRefGoogle Scholar