Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T15:03:18.747Z Has data issue: false hasContentIssue false

The computation of the Hodgkin-Snaith operation in K*(Z × BU, Z/p)

Published online by Cambridge University Press:  20 January 2009

Friedrich Hegenbarth
Affiliation:
Friedrich Hegenbarth, Abteilung Mathematik, Universität Dortmund, Postfach 500 500, 4600 Dortmund 50, West-Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper builds on the work of V. P. Snaith [5] (in particular Section 6) and gives a more explicit determination of the result.

Recently J. E. McLure has given a satisfactory account of Dyer-Lashof operations in X-theory. For any E-space Y and for any r≧2 there is a map

with specific properties (see [3], Theorem 1). Earlier, L. Hodgkin [2] and V. P. Snaith [5] constructed an operation

where Ind(Y) = {xp\x∈Kα(Y,Z/p)} is the indeterminancy of .

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1986

References

REFERENCES

1.Hegenbarth, F., K-Theorie des klassifizierenden Raumes der unendlichen symmetrischen Gruppe (Habilitations-schrift, Dortmund, 1984).Google Scholar
2.Hodgkin, L., Dyer-Lashof Operations in K-theory (London Math. Soc., Lecture notes series 11, 1974), 2732.Google Scholar
3.Mclure, J., Dyer-Lashof operations in K-theory, Bull. Amer. Math. Soc. 8 (1983), 67-72.Google Scholar
4.Schwartz, L., Opérations d'Adams en K-homologie et applications, Bull. Soc. Math. France 109 (1981), 237257.CrossRefGoogle Scholar
5.Snaith, V. P., Dyer-Lashof Operations in K-theory (Lecture Notes in Mathematics, Vol. 496, Springer Verlag, 1975), 103294.Google Scholar