Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T05:27:51.490Z Has data issue: false hasContentIssue false

Composition algebras of degree two

Published online by Cambridge University Press:  20 January 2009

Alberto Elduque
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
José M. Pérez-izquierdo
Affiliation:
Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Composition algebras in which the subalgebra generated by any element has dimension at most two are classified over fields of characteristic ≠2,3. They include, besides the classical unital composition algebras, some closely related algebras and all the composition algebras with invariant quadratic norm.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1999

References

REFERENCES

1.Cuenca, J. A., On one-sided division infinite-dimensional normal real algebras, Publ. Mat. 36 (1992), 485488.CrossRefGoogle Scholar
2.Cuenca, J. A., Elduque, A. and Pérez-Izquierdo, J. M., Power associative composition algebras, to appear.Google Scholar
3.Elduque, A., Symmetric composition algebras, J. Algebra 196 (1997), 283300.CrossRefGoogle Scholar
4.Elduque, A., Okubo algebras and twisted polynomials, Contemp. Math. 224 (1999), 101109.CrossRefGoogle Scholar
5.Elduque, A. and Myung, H. C., On Okubo algebras, in Forty Years of Rochester Symposium: From Symmetries to Strings (Das, A., ed., World Scientific Publ., River Edge, New Jersey, 1990), 299310.Google Scholar
6.Elduque, A. and Myung, H. C., Flexible composition algebras and Okubo algebras, Comm. Algebra 19 (1991), 11971227.CrossRefGoogle Scholar
7.Elduque, A. and Myung, H. C., On flexible composition algebras, Comm. Algebra 21 (1993), 24812505.CrossRefGoogle Scholar
8.Elduque, A. and Pérez-Izquierdo, J. M., Third power associative composition algebras, Manuscripta Math. 84 (1994), 7387.CrossRefGoogle Scholar
9.Elduque, A. and Pérez-Izquierdo, J. M., Composition algebras with associative bilinear form, Comm. Algebra 24 (1996), 10911116.CrossRefGoogle Scholar
10.Elduque, A. and Pérez-Izquierdo, J. M., Composition algebras withlarge derivation algebras, J. Algebra 190 (1997), 372é404.CrossRefGoogle Scholar
11.Elduque, A. and Pérez-Izquierdo, J. M., Infinite dimensional quadratic forms admitting composition, Proc. Amer. Math. Soc. 125 (1997), 22072216.CrossRefGoogle Scholar
12.El-Amin, K., Ramírez, M^ I. and Palacios, A. Rodríguez, Absolute-valued algebraic algebras are finite dimensional, J. Algebra 195 (1997), 295307.CrossRefGoogle Scholar
13.Jacobson, N., Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo (2) 7 (1958), 5580.CrossRefGoogle Scholar
14.Kaplansky, I., Infinite-dimensional quadratic forms admitting composition, Proc. Amer. Math. Soc. 4 (1953), 956960.CrossRefGoogle Scholar
15.Knus, M. A., Merkurjev, A. S., Rost, M. and Tignol, J. P., The Book of Involutions, (Amer. Math. Soc. Colloquium Publ., vol. 44, Providence, 1998).Google Scholar
16.Myung, H. C., Non Unital Composition Algebras (Global Analysis Research Center, Lecture Notes Series N. 22, Seoul, 1994).Google Scholar
17.Okubo, S., Pseudo-quaternion and pseudo-octonion algebras, Hadronic J. 1 (1978), 12501278.Google Scholar
18.Okubo, S., Dimension and classification of general composition algebras, Hadronic J. 4 (1981), 216273.Google Scholar
19.Okubo, S., Classification of flexie composition algebras, I and II, Hadronic J. 5 (1982), 15641626.Google Scholar
20.Okubo, S. and Osborn, J. M., Algebras with nondegenerate associative symmetric bilinear form permitting composition, Comm. Algebra 9 (1981), 12331261.CrossRefGoogle Scholar
21.Okubo, S. and Osborn, J. M., Algebras with nondegenerate associative symmetric bilinear form permitting composition II, Comm. Algebra 9 (1981), 20152073.CrossRefGoogle Scholar
22.Petersson, H., Quasi-composition algebras, Math. Sem. Univ. Hamburg 35 (1971), 215222.CrossRefGoogle Scholar
23.Palacios, A. Rodríguez, One-sided division absolute valued algebras, Publ. Mat. 36 (1992), 925954.CrossRefGoogle Scholar
24.Palacios, A. Rodríguez, Absolute valued algebras of degree two, in Non-Associative Algebra and Its Applications (González, S., ed., Kluwer Academic Publ., 1994), 350356.CrossRefGoogle Scholar
25.Urbanik, K. and Wright, F. B., Absolute valued algebras, Proc. Amer. Math. Soc. 11 (1960), 861866.CrossRefGoogle Scholar
26.Zhevlakov, K. A., Slin'ko, A. M., Shestakov, I. P. and Shirshov, A. I., Rings that are Nearly Associative (Academic Press. New York, 1982).Google Scholar