Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T00:53:52.270Z Has data issue: false hasContentIssue false

Cohomological uniqueness of some p-groups

Published online by Cambridge University Press:  30 August 2012

Antonio Díaz
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark ([email protected]) Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Apartado de correos 59, 29080 Málaga, Spain ([email protected]; [email protected])
Albert Ruiz
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain ([email protected])
Antonio Viruel
Affiliation:
Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Apartado de correos 59, 29080 Málaga, Spain ([email protected]; [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider classifying spaces of a family of p-groups and prove that mod p cohomology enriched with Bockstein spectral sequences determines their homotopy type among p-completed CW-complexes.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013

References

1.Bousfield, A. K. and Kan, D., Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Volume 304 (Springer, 1972).CrossRefGoogle Scholar
2.Broto, C. and Levi, R., On the homotopy typ e of BG for certain finite 2-groups G, Trans. Am. Math. Soc. 349(4) (1997), 14871502.CrossRefGoogle Scholar
3.Brown, K. S., Cohomology of groups, Graduate Texts in Mathematics, Volume 87 (Springer, 1982).CrossRefGoogle Scholar
4.Carlson, J., Coclass and cohomology, J. Pure Appl. Alg. 200 (2005), 251266.CrossRefGoogle Scholar
5.Díaz, A., Ruiz, A. and Viruel, A., All p-lo cal finite groups of rank two for odd prime p, Trans. Am. Math. Soc. 359 (2007), 17251764.CrossRefGoogle Scholar
6.Gorenstein, D., Finite groups (Harper and Row, New York, 1968).Google Scholar
7.Leary, I. J., The mod-p cohomology rings of some p-groups, Math. Proc. Camb. Phil. Soc. 112 (1992), 6375.CrossRefGoogle Scholar
8.McCleary, J., A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics, Volume 58 (Cambrige University Press, 2001).Google Scholar
9.Tate, J., Nilp otent quotient groups, Topology 3 (1964), 109111.CrossRefGoogle Scholar