Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T07:37:45.310Z Has data issue: false hasContentIssue false

Bounds for modified Bessel functions of the first and second kinds

Published online by Cambridge University Press:  05 August 2010

Árpád Baricz
Affiliation:
Department of Economics, Babeş-Bolyai University, Cluj-Napoca 400591, Romania, ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some new inequalities for quotients of modified Bessel functions of the first and second kinds are deduced. Moreover, some developments on bounds for modified Bessel functions of the first and second kinds, higher-order monotonicity properties of these functions and applications to a special function that arises in finite elasticity, are summarized. The key tool in our proofs is a frequently used criterion for the monotonicity of the quotient of two Maclaurin series.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2010

References

1. Alzer, H. and Berg, C., Some classes of completely monotonic functions, Annales Acad. Sci. Fenn. Math. 27(2) (2002), 445460.Google Scholar
2. Alzer, H. and Berg, C., Some classes of completely monotonic functions, II, Ramanujan J. 11(2) (2006), 225248.CrossRefGoogle Scholar
3. Alzer, H. and Qiu, S.-L., Monotonicity theorems and inequalities for the complete elliptic integrals, J. Computat. Appl. Math. 172(2) (2004), 289312.CrossRefGoogle Scholar
4. Amos, D. E., Computation of modified Bessel functions and their ratios, Math. Comput. 28 (1974), 239251.CrossRefGoogle Scholar
5. Anderson, G. D., Vamanamurthy, M. K. and Vuorinen, M., Generalized convexity and inequalities, J. Math. Analysis Applic. 335(2) (2007), 12941308.Google Scholar
6. András, S. and Baricz, Á., Monotonicity property of generalized and normalized Bessel functions of complex order, Complex Variables Ellipt. Eqns 54(7) (2009), 689696.CrossRefGoogle Scholar
7. Balasubramanian, R., Ponnusamy, S. and Vuorinen, M., Functional inequalities for the quotients of hypergeometric functions, J. Math. Analysis Applic. 319(1) (1998), 256268.Google Scholar
8. Baricz, Á., Landen-type inequality for Bessel functions, Computat. Meth. Funct. Theory 5(2) (2005), 373379.CrossRefGoogle Scholar
9. Baricz, Á., Functional inequalities involving special functions, J. Math. Analysis Applic. 319(2) (2006), 450459.CrossRefGoogle Scholar
10. Baricz, Á., Functional inequalities involving special functions, II, J. Math. Analysis Applic. 327(2) (2007), 12021213.CrossRefGoogle Scholar
11. Baricz, Á., Turán-type inequalities for generalized complete elliptic integrals, Math. Z. 256(4) (2007), 895911.Google Scholar
12. Baricz, Á., Functional inequalities for Galué's generalized modified Bessel functions, J. Math. Inequal. 1(2) (2007), 183193.CrossRefGoogle Scholar
13. Baricz, Á., Generalized Bessel functions of the first kind, PhD Thesis, Babeş-Bolyai University, Cluj-Napoca (2008).Google Scholar
14. Baricz, Á., Turán-type inequalities for hypergeometric functions, Proc. Am. Math. Soc. 136(9) (2008), 32233229.CrossRefGoogle Scholar
15. Baricz, Á., Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math. 26(3) (2008), 279293.Google Scholar
16. Baricz, Á., On a product of modified Bessel functions, Proc. Am. Math. Soc. 137(1) (2009), 189193.CrossRefGoogle Scholar
17. Baricz, Á., Tight bounds for the generalized Marcum Q-function, J. Math. Analysis Applic. 360(1) (2009), 265277.Google Scholar
18. Baricz, Á., Turán-type inequalities for some probability density functions, Studia Sci. Math. Hungar. 47(2) (2010), 175189.Google Scholar
19. Baricz, Á. and Neuman, E., Inequalities involving modified Bessel functions of the first kind, II, J. Math. Analysis Applic. 332(1) (2007), 265271.CrossRefGoogle Scholar
20. Baricz, Á. and Ponnusamy, S., Starlikeness and convexity of generalized Bessel functions, Integ. Trans. Special Funct., in press (doi: 10.1080/10652460903516736).Google Scholar
21. Baricz, Á. and Sun, Y., New bounds for the generalized Marcum Q-function, IEEE Trans. Inform. Theory 55(7) (2009), 30913100.CrossRefGoogle Scholar
22. Baricz, Á. and Sun, Y., Bounds for the generalized Marcum Q-function, Appl. Math. Computat., in press.Google Scholar
23. Biernacki, M. and Krzyż, J., On the monotonity of certain functionals in the theory of analytic functions, Annales Univ. Mariae Curie-Skłodowska A 9(1955), 135147.Google Scholar
24. Bôcher, M., On certain methods of Sturm and their application to the roots of Bessel's functions, Bull. Am. Math. Soc. 3(1987), 205213.Google Scholar
25. Bochner, S., Harmonic analysis and the theory of probability (University of California Press, Berkeley, CA, 1960).Google Scholar
26. Bordelon, D. J., Problem 72–15, inequalities for special functions, SIAM Rev. 15(1973), 665668.CrossRefGoogle Scholar
27. Boyd, A. V., The monotonicity of I1(x)/I0(x), Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 209(1967), 3536.Google Scholar
28. Carlson, B. C., Special functions of applied mathematics (Academic Press, New York, 1977).Google Scholar
29. Cochran, J. A., The monotonicity of modified Bessel functions with respect to their order, J. Math. Phys. 46(1967), 220222.CrossRefGoogle Scholar
30. De Sitter, J. M. and Goovaerts, M. J., On two inequalities satisfied by Bessel functions, Bull. Belg. Math. Soc. Simon Stevin 46(1972), 159164.Google Scholar
31. Dubourdieu, J., Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace–Stieltjes, Compositio Math. 7(1939), 96111.Google Scholar
32. Elbert, Á., Concavity of the zeros of Bessel functions, Studia Sci. Math. Hungar. 12(1977), 8188.Google Scholar
33. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F., Higher transcendental functions, Volume 2 (McGraw-Hill, New York, 1954).Google Scholar
34. Gargantinia, I. and Henrici, P., A continued fraction algorithm for the computation of higher transcendental functions in the complex plane, Math. Comp. 21(1967), 1829.Google Scholar
35. Giordano, C., Laforgia, A. and Pečarić, J., Supplements to known inequalities for some special functions, J. Math. Analysis Applic. 200(1) (1996), 3441.CrossRefGoogle Scholar
36. Gronwall, T. H., An inequality for the Bessel functions of the first kind with imaginary argument, Annals Math. 33(1932), 275278.CrossRefGoogle Scholar
37. Gupta, S. L., On an inequality for modified Bessel functions, Univ. Roorkee Res. J. 9(1966), 1719.Google Scholar
38. Hartman, P., Difference equations: disconjugacy, principal solutions, Green's functions, complete monotonicity, Trans. Am. Math. Soc. 246(1978), 130.Google Scholar
39. Hausdorff, F., Summationsmethoden und Momentfolgen, I, Math. Z. 9(1921), 74109.Google Scholar
40. Heikkala, V., Vamanamurthy, M. K. and Vuorinen, M., Generalized elliptic integrals, Computat. Meth. Funct. Theory 9(1) (2009), 75109.Google Scholar
41. Ifantis, E. K. and Siafarikas, P. D., Inequalities involving Bessel and modified Bessel functions, J. Math. Analysis Applic. 147(1) (1990), 214227.Google Scholar
42. Ifantis, E. K. and Siafarikas, P. D., Bounds for modified Bessel functions, Rend. Circ. Mat. Palermo 40(1) (1991), 347356.Google Scholar
43. Ismail, M. E. H., Complete monotonicity of modified Bessel functions, Proc. Am. Math. Soc. 108(2) (1990), 353361.CrossRefGoogle Scholar
44. Ismail, M. E. H., Remarks on a paper by Giordano, Laforgia and Pečarić, J. Math. Analysis Applic. 211(2) (1997), 621625.Google Scholar
45. Ismail, M. E. H. and Kelker, D. H., Special functions, Stieltjes transforms and infinite divisibility, SIAM J. Math. Analysis 10(2) (1979), 884901.Google Scholar
46. Ismail, M. E. H. and Muldoon, M. E., Certain monotonicity properties of Bessel functions, J. Math. Analysis Applic. 118(1) (1986), 145150.CrossRefGoogle Scholar
47. Jones, A. L., An extension of an inequality involving modified Bessel functions, J. Math. Phys. 47 (1968), 220221.Google Scholar
48. Joshi, C. M. and Bissu, S. K., Some inequalities of Bessel and modified Bessel functions, J. Austral. Math. Soc. A50(2) (1991), 333342.CrossRefGoogle Scholar
49. Joshi, C. M. and Bissu, S. K., Inequalities for some special functions, J. Computat. Appl. Math. 69(2) (1996), 251259.Google Scholar
50. Kayumov, I. R., The spectrum of integral means and a modified Bessel function of zero order, Algebra I Analiz 17(3) (2005), 107123 (in Russian; English translation: St Petersburg Math. J. 17 (3) (2006), 453–463).Google Scholar
51. Laforgia, A., Bounds for modified Bessel functions, J. Computat. Appl. Math. 34(3) (1991), 263267.CrossRefGoogle Scholar
52. Laforgia, A. and Mathis, M. L., Bounds for Bessel functions, Rend. Circ. Mat. Palermo 38(2) (1989), 319328.Google Scholar
53. Laforgia, A. and Natalini, P., Some inequalities for modified Bessel functions, J. Inequal. Appl. 2010(2010), 253035.Google Scholar
54. Lorch, L., Inequalities for some Whittaker functions, Arch. Math. (Brno) 3(1967), 19.Google Scholar
55. Lorch, L., Monotonicity of the zeros of a cross product of Bessel functions, Meth. Applic. Analysis 1(1) (1994), 7580.Google Scholar
56. Luke, Y. L., Inequalities for generalized hypergeometric functions, J. Approx. Theory 5(1972), 4165.Google Scholar
57. Miller, K. S. and Samko, S. G., Completely monotonic functions, Integ. Transf. Special Funct. 12(4) (2001), 389402.Google Scholar
58. Nåsell, I., Inequalities for modified Bessel functions, Math. Comp. 28(1974), 253256.Google Scholar
59. Nåsell, I., Rational bounds for ratios of modified Bessel functions, SIAM J. Math. Analysis 9(1) (1978), 111.CrossRefGoogle Scholar
60. Neuman, E., Inequalities involving modified Bessel functions of the first kind, J. Math. Analysis Applic. 171(2) (1992), 532536.CrossRefGoogle Scholar
61. Paris, R. B., An inequality for the Bessel function Jν(νx), SIAM J. Math. Analysis 15(1) (1984), 203205.CrossRefGoogle Scholar
62. Penfold, R., Vanden-Broeck, J.-M. and Grandison, S., Monotonicity of some modified Bessel function products, Integ. Transf. Special Funct. 18(2007), 139144.Google Scholar
63. Petropoulou, E., Bounds for ratios of modified Bessel functions, Integ. Transf. Special Funct. 9(4) (2000), 293298.CrossRefGoogle Scholar
64. Pogány, T., Further results on generalized Kapteyn-type expansions, Appl. Math. Lett. 22(2) (2009), 192196.CrossRefGoogle Scholar
65. Ponnusamy, S. and Vuorinen, M., Aymptotic expansions and inequalities for hypergeometric functions, Mathematika 44(2) (1997), 4364.CrossRefGoogle Scholar
66. Reudink, D. O., On the signs of the ν-derivatives of the modified Bessel functions Iν(x) and Kν(x), J. Res. Nat. Bur. Standards B72(1968), 279280.Google Scholar
67. Robert, C., Modified Bessel functions and their applications in probability and statistics, Statist. Prob. Lett. 9(2) (1990), 155161.CrossRefGoogle Scholar
68. Rosenthal, D. K., The shape and stability of a bubble at the axis of a rotating liquid, J. Fluid Mech. 12(1962), 358366.Google Scholar
69. Ross, D. K., The stability of a column of liquid to torsial oscillations, Z. Angew. Math. Phys. 21 (1970), 137140.CrossRefGoogle Scholar
70. Ross, D. K., Problem 72-15, inequalities for special functions, SIAM Rev. 15(1973), 668670.Google Scholar
71. Simpson, H. C. and Spector, S. J., Some monotonicity results for ratios of modified Bessel functions, Q. Appl. Math. 42(1) (1984), 9598.CrossRefGoogle Scholar
72. Simpson, H. C., Spector, S. J., On barelling for a special material in finite elasticity, Q. Appl. Math. 42(1) (1984), 99105.Google Scholar
73. Sitnik, S. M., Inequalities for Bessel functions, Dokl. Akad. Nauk SSSR 340(1) (1995), 2932.Google Scholar
74. Soni, R. P., On an inequality for modified Bessel functions, J. Math. Phys. 44(1965), 406407.Google Scholar
75. Wall, H. S., Analytic theory of continued fractions (Van Nostrand, New York, 1948).Google Scholar
76. Watson, G. N., A treatise on the theory of Bessel functions (Cambridge University Press, 1944).Google Scholar
77. Watson, G. S., Statistics on spheres (John Wiley & Sons, New York, 1983).Google Scholar
78. Weniger, E. J. and Cížek, J., Rational approximations for the modified Bessel function of the second kind, Comput. Phys. Commun. 59(3) (1990), 471493.Google Scholar
79. Widder, D. V., The Laplace transform (Princeton University Press, 1941).Google Scholar