Published online by Cambridge University Press: 20 January 2009
For a fixed integer q≧2, every positive integer where each ar(q, k) ∈ {0, 1, 2, …, q–1}. The sum of digits function α(q, k) = behaves rather erratically but on averaging has a uniform behaviour. In particular if A(q, n) = , where n > 1, then it is well known that A(q, n)∼½ ((q – 1)/log q) n log n as n→∞. For even values of q, a lower bound is now given for the difference ½S(q, n) = A(q, n)–½(q–1)[logn/logq] n, where [log n/log q] denotes the greatest integer ≦ log n/log q, complementing an earlier result for odd values of q.