Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T19:01:08.492Z Has data issue: false hasContentIssue false

Asymptotic distribution of Liusternik-Schnirelman eigenvalues for elliptic nonlinear operators

Published online by Cambridge University Press:  20 January 2009

V. B. Moscatelli
Affiliation:
Instituto Di MatematicaUniversità CP193Via Arnesano73100 Lecce, Italy
M. Thompson
Affiliation:
Instituto De MatemáticaUFRGSCampus Do Vale9500 Bento Gonçalves91500 Porto Alegre, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Asymptotic formulae are given for the distribution of Liusternik-Schnirelman eigenvalues of certain pairs of nonlinear functionals generalising the usual Weyl theory for linear pairs of elliptic operators. In particular an application is made to the von Kármán theory of buckled plates.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1990

References

REFERENCES

1.Agmon, S., Lectures on Elliptic Boundary Value Problems (Van Nostrand, Princeton, N.J., 1965).Google Scholar
2.Berger, M., A bifurcation theory for nonlinear differential equations and related topics, in: Bifurcation Theory and Nonlinear Eigenvalue Problems (Edited by Keller, J. B. and Antman, S., Benjamin, New York, 1969), 113216.Google Scholar
3.Berger, M., Multiple solutions of nonlinear operator equations arising from the calculus of variations, Proc. Sympos. A.M.S. 18 (1970), 1027.Google Scholar
4.Berger, M., Nonlinearity and Functional Analysis (Academic Press, New York, 1977).Google Scholar
5.Browder, F. E., Existence theorems for nonlinear partial differential equations, Proc. Sympos. Pure Math. 16 (1970), 161.CrossRefGoogle Scholar
6.Browder, F. E., Nonlinear eigenvalue problems and group invariance, in: Functional Analysis and Related Fields (Edited by Browder, F. E., Springer-Verlag, 1970), 158.Google Scholar
7.Chiappinelli, R., The asymptotic distribution of eigenvalues of a nonlinear problem, Boll. Un. Mat. Ital. B(6) 1 (1982), 11311149.Google Scholar
8.Chiappinelli, R., On the eigenvalues and the spectrum for a class of semilinear elliptic operators, Boll. Un. Mat. Ital. B(6) 4 (1985), 867882.Google Scholar
9.Fučik, S., Necas, J., Souček, J. and Souček, V., Spectral Analysis of Nonlinear Operators, (Lecture Notes in Mathematics 346 Springer-Verlag, Berlin, 1973).CrossRefGoogle Scholar
10.Metivier, G., Valeurs propres des problems aux limites elliptiques irregulières, Bull. Soc. Math. France Memoire 51–52 (1977), 125219.CrossRefGoogle Scholar
11.Moscatelli, V. B. and Thompson, M., Asymptotic eigenvalue distributions for pairs of bilinear forms, Ricerche Mat. 32 (1983), 4163.Google Scholar
12.Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (North-Holland Publishing Co., New York, 1978).Google Scholar
13.Yosida, K., Functional Analysis (Springer-Verlag, Berlin, 1966).Google Scholar