No CrossRef data available.
Article contents
Arithmetic Density
Part of:
Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
Diophantine approximation, transcendental number theory
Published online by Cambridge University Press: 14 December 2015
Abstract
We give measure estimates for sets appearing in the study of dynamical systems, such as preimages of Diophantine classes.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 59 , Issue 3 , August 2016 , pp. 691 - 700
- Copyright
- Copyright © Edinburgh Mathematical Society 2015
References
1.
Arnold, V. I., Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Usp. Mat. Nauk
18(5) (1963), 13–40.Google Scholar
2.
Bruno, A. D., Analytic form of differential equations, I, Trans. Mosc. Math. Soc.
25 (1971), 131–288.Google Scholar
4.
Garay, M. D., The Herman conjecture, in Singularities, Oberwolfach Reports, Report 46, pp. 43–45 (European Mathematical Society, 2012).Google Scholar
6.
Garay, M. D., Degenerations of invariant Lagrangian manifolds, J. Singularities
8 (2014), 50–67.Google Scholar
7.
Herman, M. R., Some open problems in dynamical systems, in Proc. International Congress of Mathematicians, Berlin, Germany, 18–27 August 1998, Volume II, pp. 797–808 (Universität Bielefeld, Fakultät für Mathematick, 1998).Google Scholar
8.
Kleinbock, D., Extremal subspaces and their submanifolds, Geom. Funct. Analysis
13(2) (2003), 437–466.CrossRefGoogle Scholar
9.
Kleinbock, D. Y. and Margulis, G. A., Flows on homogeneous spaces and Diophantine approximation on manifolds, Annals Math.
148 (1998), 339–360.Google Scholar
10.
Kolmogorov, A. N., On the conservation of quasi-periodic motions for a small perturbation of the Hamiltonian function, Dokl. Akad. Nauk SSSR
98 (1954), 527–530 (in Russian).Google Scholar
11.
Mahler, K., Über das Maß der Menge aller S-Zahlen, Math. Annalen
106(1) (1932), 131–139.CrossRefGoogle Scholar
12.
Pyartli, A. S., Diophantine approximations on submanifolds of Euclidean space, Funct. Analysis Applic.
3(4) (1969), 303–306.CrossRefGoogle Scholar
13.
Rüssmann, H., Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Reg. Chaot. Dyn.
6(2) (2001), 119–204.Google Scholar
14.
Sprindzhuk, V. G., A proof of Mahler's conjecture on the measure of the set of S-numbers, Izv. RAN Ser. Mat.
29(2) (1965), 379–436.Google Scholar