Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T21:18:22.120Z Has data issue: false hasContentIssue false

Almost Gentle Algebras and their Trivial Extensions

Published online by Cambridge University Press:  29 November 2018

Edward L. Green*
Affiliation:
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA ([email protected])
Sibylle Schroll
Affiliation:
Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, UK ([email protected])
*
*Corresponding author.

Abstract

In this paper we define almost gentle algebras, which are monomial special multiserial algebras generalizing gentle algebras. We show that the trivial extension of an almost gentle algebra by its minimal injective co-generator is a symmetric special multiserial algebra and hence a Brauer configuration algebra. Conversely, we show that any almost gentle algebra is an admissible cut of a unique Brauer configuration algebra and, as a consequence, we obtain that every Brauer configuration algebra with multiplicity function identically one is the trivial extension of an almost gentle algebra. We show that a hypergraph is associated with every almost gentle algebra A, and that this hypergraph induces the Brauer configuration of the trivial extension of A. Among other things, this gives a combinatorial criterion to decide when two almost gentle algebras have isomorphic trivial extensions.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arnesen, K. K., Laking, R. and Pauksztello, D., Morphisms between indecomposable complexes in the bounded derived category of a gentle algebra, J. Algebra 467 (2016), 146.Google Scholar
2.Assem, I., Brüstle, T., Charbonneau-Jodoin, G. and Plamondon, P.-G., Gentle algebras arising from surface triangulations, Algebra Number Theory 4(2) (2010), 201229.Google Scholar
3.Bekkert, V. and Merklen, H. A., Indecomposables in derived categories of gentle algebras, Algebr. Represent. Theory 6(3) (2003), 285302.Google Scholar
4.Benson, D. J., Resolutions over symmetric algebras with radical cube zero, J. Algebra 320(1) (2008), 4856.Google Scholar
5.Bocklandt, R., A dimer ABC, Bull. Lond. Math. Soc. 48(3) (2016), 387451.Google Scholar
6.Bocklandt, R., Noncommutative mirror symmetry for punctured surfaces. With an appendix by Mohammed Abouzaid, Trans. Amer. Math. Soc. 368(1) (2016), 429469.Google Scholar
7.Brüstle, T., Douville, G., Mousavand, K., Thomas, H. and Yildirim, E., On the combinatorics of gentle algebras, arXiv: 1707.07665.Google Scholar
8.Butler, M. C. R. and Ringel, C. M., Auslander–Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15(1–2) (1987), 145179.Google Scholar
9.Canakci, I. and Schroll, S., Extensions in Jacobian algebras and cluster categories of marked surfaces, Adv. Math. 313 (2017), 149.Google Scholar
10.Canakci, I., Pauksztello, D. and Schroll, S., On extensions for gentle algebras, arXiv: 1707.06934.Google Scholar
11.Crawley-Boevey, W. W., Maps between representations of zero-relation algebras, J. Algebra 126(2) (1989), 259263.Google Scholar
12.Erdmann, K., Ext-finite modules for weakly symmetric algebras with radical cube zero, J. Aust. Math. Soc. 102(1) (2017), 108121.Google Scholar
13.Erdmann, K. and Solberg, Ø., Radical cube zero weakly symmetric algebras and support varieties, J. Pure Appl. Algebra 215(2) (2011), 185200.Google Scholar
14.Fernández, E., Extensiones triviales y álgebras inclinadas iteradas, PhD thesis, Universidad Nacional del Sur, Argentina, 1999.Google Scholar
15.Fernández, E. A. and Platzeck, M.I., Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner, J. Algebra 249(2) (2002), 326344.Google Scholar
16.Garver, A. and McConville, T., Oriented flip graphs and noncrossing tree partitions, arXiv: 1604.06009.Google Scholar
17.Geiss, C. and Reiten, I., Gentle algebras are Gorenstein, In Representations of algebras and related topics, Fields Institute Communications, Volume 45, pp. 129133 (American Mathematical Society, Providence, RI, 2005).Google Scholar
18.Green, E. L. and Schroll, S., Multiserial and special multiserial algebras and their representations, Adv. Math. 302 (2016), 11111136.Google Scholar
19.Green, E. L. and Schroll, S., Brauer configurations algebras, Bull. Sci. Math. 141(6) (2017), 539572.Google Scholar
20.Green, E. L. and Schroll, S., Special multiserial algebras are quotients of symmetric special multiserial algebras, J. Algebra 473 (2017), 397405.Google Scholar
21.Haiden, F., Katzarkov, L. and Kontsevich, M., Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 247318.Google Scholar
22.Huerfano, R. S. and Khovanov, M., A category for the adjoint representation, J. Algebra 246(2) (2001), 514542.Google Scholar
23.Kalck, M., Singularity categories of gentle algebras, Bull. Lond. Math. Soc. 47(1) (2015), 6574.Google Scholar
24.Krause, H., Maps between tree and band modules, J. Algebra 137(1) (1991), 186194.Google Scholar
25.Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. (3) 98(3) (2009), 797839.Google Scholar
26.Lekili, Y. and Polishchuk, A., Derived equivalences of gentle algebras via Fukaya categories, arXiv: 1801.06370.Google Scholar
27.Opper, S., Plamondon, P.-G. and Schroll, S., A geometric model for the derived category of gentle algebras, arXiv: 1801.09659.Google Scholar
28.Parsons, M. J. and Simoes, R. C., Endomorphism algebras for a class of negative Calabi–Yau categories, arXiv: 1602.02318.Google Scholar
29.Schröer, J. and Zimmermann, A., Stable endomorphism algebras of modules over special biserial algebras, Math. Z. 244(3) (2003), 515530.Google Scholar
30.Schroll, S., Trivial extensions of gentle algebras and Brauer graph algebras, J. Algebra 444 (2015), 183200.Google Scholar