Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-11T20:20:03.829Z Has data issue: false hasContentIssue false

Virtually spinning hyperbolic manifolds

Published online by Cambridge University Press:  05 December 2019

D. D. Long
Affiliation:
Department of Mathematics, University of California, Santa Barbara, CA93106, USA ([email protected])
A. W. Reid
Affiliation:
Department of Mathematics, Rice University, Houston, TX77005, USA ([email protected])

Abstract

We give a new proof of a result of Sullivan [Hyperbolic geometry and homeomorphisms, in Geometric topology (ed. J. C. Cantrell), pp. 543–555 (Academic Press, New York, 1979)] establishing that all finite volume hyperbolic n-manifolds have a finite cover admitting a spin structure. In addition, in all dimensions greater than or equal to 5, we give the first examples of finite-volume hyperbolic n-manifolds that do not admit a spin structure.

MSC classification

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bohr, C., On the signatures of even 4-manifolds, Math. Proc. Cambridge Philos. Soc. 132 (2002), 453469.CrossRefGoogle Scholar
2.Borel, A., Density and maximality of arithmetic subgroups, J. Reine Angew Math. 224 (1966), 7889.CrossRefGoogle Scholar
3.Conder, M. D. E. and Maclachlan, C., Compact hyperbolic 4-manifolds of small volume, Proc. Amer. Math. Soc. 133 (2005), 24692476.CrossRefGoogle Scholar
4.Davis, M., A hyperbolic 4-manifold, Proc. Amer. Math. Soc. 93 (1985), 325328.Google Scholar
5.Deligne, P. and Sullivan, D., Fibrés vectorials complexes à groupe structural discrete, C. R. Acad. Sci Paris Série A 281 (1975), 10811083.Google Scholar
6.Emery, V., Ratcliffe, J. G. and Tschantz, S. T., Salem numbers and arithmetic hyperbolic groups, Trans. A. M. S. 372 (2019), 329355.CrossRefGoogle Scholar
7.Everitt, B. and Maclachlan, C., Constructing hyperbolic manifolds, in Computational and Geometric Aspects of Modern Algebra (Edinburgh, 1998), London Mathematical Society Lecture Note Series (ed. Atkinson, M., Howie, J., Linton, S. and Robertson, E.), Volume 275, pp. 7886 (Cambridge University Press, 2000).CrossRefGoogle Scholar
8.Johnson, N. W., Kellerhals, R., Ratcliffe, J. G. and Tschantz, S. T., Commensurability classes of hyperbolic Coxeter groups, Linear Algebra Appl. 372 (2002), 119147.CrossRefGoogle Scholar
9.Kirby, R., The topology of 4-manifolds, Lecture Notes in Mathematics, Volume 1374 (Springer-Verlag, 1985).Google Scholar
10.Lambert, T. P., Ratcliffe, J. and Tschantz, S., Closed flat Riemannian 4-manifolds (arXiv: 1306.6613v1, 2013).Google Scholar
11.Lawson, H. B. and Michelson, M-L., Spin geometry, Princeton Mathematical Series, Volume 38 (Princeton University Press, 1989).Google Scholar
12.Long, D. D. and Reid, A. W., All flat manifolds are cusps of hyperbolic orbifolds, Algebr. Geom. Topol. 2 (2002), 285296.CrossRefGoogle Scholar
13.Martelli, B., Riolo, S. and Slavich, L., Compact hyperbolic manifolds without spin structures (arXiv: 1904.1272v2, 2019).Google Scholar
14.McReynolds, D. B., Controlling manifold covers of orbifolds, Math. Res. Lett. 16 (2009), 651662.CrossRefGoogle Scholar
15.Millson, J. J., Real vector bundles with discrete structure group, Topology 18 (1979), 8389.CrossRefGoogle Scholar
16.Putrycz, B. and Szczepański, A., Existence of spin structures on flat four-manifolds, Adv. Geom. 10 (2010), 323332.CrossRefGoogle Scholar
17.Ratcliffe, J. and Tschantz, S., On the Davis hyperbolic 4-manifold, Topol. Appl. 111 (2001), 327342.CrossRefGoogle Scholar
18.Ratcliffe, J., Ruberman, D. and Tschantz, S., Harmonic spinors on the Davis hyperbolic 4-manifold, J. Topol. Anal., to appear.Google Scholar
19.Sullivan, D., Hyperbolic geometry and homeomorphisms, in Geometric topology (ed. Cantrell, J. C.), pp. 543555 (Academic Press, New York, 1979).CrossRefGoogle Scholar
20.Vinberg, E. B. and Shvartsman, O. V., Discrete groups of motions of spaces of constant curvature, in Geometry II, Encyclopaedia of Mathematical Sciences (ed. Gamkrelidze, R. V.), Volume 29, pp. 139248 (Springer-Verlag, 1993).CrossRefGoogle Scholar