Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-21T15:15:43.589Z Has data issue: false hasContentIssue false

The sectional curvature of the infinite dimensional manifold of Hölder equilibrium probabilities

Published online by Cambridge University Press:  18 December 2024

Artur O. Lopes*
Affiliation:
Inst. de Matematica e Estatistica, UFRGS, Porto Alegre, RS, Brazil
Rafael O. Ruggiero
Affiliation:
Dept. de Matematica, PUC, Rio de Janeiro, RJ, Brazil
*
*Corresponding author: Artur O. Lopes, email: [email protected]

Abstract

Here we consider the discrete time dynamics described by a transformation $T:M \to M$, where T is either the action of shift $T=\sigma$ on the symbolic space $M=\{1,2, \ldots,d\}^{\mathbb{N}}$, or, T describes the action of a d to 1 expanding transformation $T:S^1 \to S^1$ of class $C^{1+\alpha}$ (for example $x \to T(x) =\mathrm{d} x $ (mod 1)), where $M=S^1$ is the unit circle. It is known that the infinite-dimensional manifold $\mathcal{N}$ of Hölder equilibrium probabilities is an analytical manifold and carries a natural Riemannian metric. Given a certain normalized Hölder potential A denote by $\mu_A \in \mathcal{N}$ the associated equilibrium probability. The set of tangent vectors X (functions $X: M \to \mathbb{R}$) to the manifold $\mathcal{N}$ at the point µA (a subspace of the Hilbert space $L^2(\mu_A)$) coincides with the kernel of the Ruelle operator for the normalized potential A. The Riemannian norm $|X|=|X|_A$ of the vector X, which is tangent to $\mathcal{N}$ at the point µA, is described via the asymptotic variance, that is, satisfies

$ |X|^2 = \langle X, X \rangle = \lim_{n \to \infty}\frac{1}{n} \int (\sum_{i=0}^{n-1} X\circ T^i )^2 \,\mathrm{d} \mu_A$.

Consider an orthonormal basis Xi, $i \in \mathbb{N}$, for the tangent space at µA. For any two orthonormal vectors X and Y on the basis, the curvature $K(X,Y)$ is

\begin{equation*}K(X,Y) = \frac{1}{4}[ \sum_{i=1}^\infty (\int X Y X_i \,\mathrm{d} \mu_A)^2 - \sum_{i=1}^\infty \int X^2 X_i \,\mathrm{d} \mu_A \int Y^2 X_i \,\mathrm{d} \mu_A ].\end{equation*}

When the equilibrium probabilities µA is the set of invariant Markov probabilities on $\{0,1\}^{\mathbb{N}}\subset \mathcal{N}$, introducing an orthonormal basis $\hat{a}_y$, indexed by finite words y, we show explicit expressions for $K(\hat{a}_x,\hat{a}_z)$, which is a finite sum. These values can be positive or negative depending on A and the words x and z. Words $x,z$ with large length can eventually produce large negative curvature $K(\hat{a}_x,\hat{a}_z)$. If $x, z$ do not begin with the same letter, then $K(\hat{a}_x,\hat{a}_z)=0$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Partially supported by CNPq

References

Amari, S., Information Geometry and Its Applications (Springer, 2016).CrossRefGoogle Scholar
Baladi, V., Positive Transfer Operators and Decay of Correlations (World Sci., River Edge, NJ, 2000).CrossRefGoogle Scholar
Biliotti, L. and Mercuri, F., Riemannian Hilbert manifolds. Hermitian-Grassmannian Submanifolds, 261–271, Springer Proc. Math. Stat. 203 (Springer, Singapore, 2017).Google Scholar
Bomfim, T., Castro, A. and Varandas, P., Differentiability of thermodynamical quantities in non-uniformly expanding dynamics, Adv. Math. 292 (9) (2016), 478528.CrossRefGoogle Scholar
Bridgeman, M., Canary, R. and Sambarino, A., An introduction to pressure metrics on higher Teichmüller spaces, Ergodic Theory and Dynam. Systems, 38 (6) (2018), 20012035.CrossRefGoogle Scholar
Chae, S. B., Holomorphy and Calculus in Normed Spaces (CRC Press Boca Raton, New York, 1985).Google Scholar
Cioletti, L., Hataishi, L., Lopes, A. O. and Stadlbauer, M., Spectral triples on thermodynamic formalism and dixmier trace representations of Gibbs measures: theory and examples. arXiv 2022.Google Scholar
da Silva, E. A., da Silva, R. R. and Souza, R. R., The analyticity of a generalized Ruelle’s operator, Bull. Brazil. Math. Soc. (N.S.) 45 (1) (2014), 5372.CrossRefGoogle Scholar
do Carmo, M., Riemannian Geometry (Springer, 1992).CrossRefGoogle Scholar
Giulietti, P., Kloeckner, B., Lopes, A. O. and Marcon, D., The calculus of thermodynamical formalism, Journ. of the European Math. Society 20(10) (2018), 23572412.CrossRefGoogle Scholar
Ji, C., Estimating functionals of one-dimensional Gibbs states, Probab. Th. Rel. Fields 82 (1989), 155175.CrossRefGoogle Scholar
Kessebohmer, M. and Samuel, T., Spectral metric spaces for Gibbs measures, Journal of Functional Analysis 265 (2013), 18011828.CrossRefGoogle Scholar
Lopes, A. O. and Mengue, J., On information gain, Kullback-Leibler divergence, entropy production and the involution kernel, Discr. and Cont. Dyn. Systems - Series A 42, (7) (2022), 35933627.CrossRefGoogle Scholar
Lopes, A. O. and Ruggiero, R. O., Nonequilibrium in thermodynamic formalism: the second law, gases and information geometry, Qual. Theo. of Dyn. Syst. 21(21) (2022), 144.Google Scholar
Lopes, A. O. and Ruggiero, R. O., Geodesics and dynamical information projections on the manifold of Hölder equilibrium probabilities, arXiv, (2022).Google Scholar
Ma, L. and Pollicott, M., Rigidity of pressures of Hölder potentials and the fitting of analytic functions via them, Arxiv Syst. 44(12) (2024), 35303564.Google Scholar
McMullen, C. T., Thermodynamics, dimension and the Weil–Petersson metric, Invent. Math. 173 (2008), 365425.CrossRefGoogle Scholar
Parry, W. and Pollicott, M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque (1990), 187188.Google Scholar
Petkov, V. and Stoyanov, L., Spectral estimates for Ruelle transfer operators with two parameters and applications, Discr. Cont. Dyn. Sys. A 36 (2016), 64136451.Google Scholar
Petkov, V. and Stoyanov, L., Spectral estimates for Ruelle operators with two parameters and sharp large deviations, Disc. and Cont. Dyn. Syst., 39(11), (2019), 63916417.CrossRefGoogle Scholar
Pollicott, M. and Sharp, R., A Weil–Petersson type metric on spaces of metric graphs, Geom. Dedicata 172 (1) (2014), 229244.CrossRefGoogle Scholar
Ruelle, D., Thermodynamic Formalism (Addison Wesley, 2010).Google Scholar
Whittlesey, E. F., Analytic functions in Banach spaces, Proc. Amer. Math. Soc. 16 (5) (1965), 10771083.CrossRefGoogle Scholar