We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
holds for all $x,\,y\in X$. A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$, there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Cheng, L. X. and Li, M., Extreme points exposed points differentiability points in CL-spaces, Proc. Amer. Math. Soc. 136(7) (2008), 2445–2451.CrossRefGoogle Scholar
2
Chevalier, G., Wigner's theorem and its generalizations, in Handbook of quantum logic and quantum structures, pp. 429–475 (Elsevier Sci. B. V., Amsterdam, 2007).CrossRefGoogle Scholar
3
Fullerton, R. E., Geometrical characterization of certain function spaces, in Proc. Inter. Sympos. Linear Spaces, pp. 227–236, 1960 (Jerusalem Academic Press/Pergamon, Jerusalem/Oxford, 1961).Google Scholar
4
Gehér, Gy. P., An elementary proof for the non-bijective version of Wigner's theorem, Phys. Lett. A378 (2014), 2054–2057.10.1016/j.physleta.2014.05.039CrossRefGoogle Scholar
5
Györy, M., A new proof of Wigner's theorem, Rep. Math. Phys. 54 (2004), 159–167.CrossRefGoogle Scholar
6
Hansen, A. B. and Lima, Å., The structure of finite dimensional Banach spaces with the 3.2 intersection property, Acta Math. 146 (1981), 1–23.CrossRefGoogle Scholar
7
Holmes, R. B., Geometric Functional Analysis and its Applications (New York, NY, Springer-Verlag, 1975).10.1007/978-1-4684-9369-6CrossRefGoogle Scholar
Jia, W. and Tan, D., Wigner's theorem in $\mathcal {L}^{\infty }(\Gamma )$-type spaces, Bull. Austral. Math. Soc. 97(2) (2018), 279–284.CrossRefGoogle Scholar
10
Lima, Å., Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1–62.CrossRefGoogle Scholar
11
López, G., Martín, M. and Payá, R., Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207–212.CrossRefGoogle Scholar
12
Maksa, G. and Páles, Z., Wigner's theorem revisited, Publ. Math. Debrecen81(12) (2012), 243–249.CrossRefGoogle Scholar
13
Mankiewicz, P., On extension of isometries in normed linear spaces, Bull. Acad. Polon, Sci. Set. Sci. Math. Astronomy, Phys. 20 (1972), 367–371.Google Scholar
14
Martín, M., Banach spaces having the Radon-Nikodým property and numerical index 1, Proc. Amer. Math. Soc. 131 (2003), 3407–3410.10.1090/S0002-9939-03-07176-4CrossRefGoogle Scholar
15
Martín, M. and Payá, R., On CL-spaces and almost CL-spaces, Ark. Mat. 42 (2004), 107–118.CrossRefGoogle Scholar
16
Mazur, S. and Ulam, S., Surles transformationes isométriques despaces vectoriels normés, C. R. Math. Acad. Sci. Paris194 (1932), 946–948.Google Scholar
17
Molnár, L., Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn's version of Wigner's theorem, J. Funct. Anal. 194(2) (2002), 248–262.10.1006/jfan.2002.3970CrossRefGoogle Scholar
18
Mori, M., Tingley's problem through the facial structure of operator algebras, J. Math. Anal. Appl. 466(2) (2018), 1281–1298.10.1016/j.jmaa.2018.06.050CrossRefGoogle Scholar
19
Rätz, J., On Wigner's theorem: remarks, complements, comments, and corollaries, Aequationes Math. 52(1-2) (1996), 1–9.CrossRefGoogle Scholar
20
Reisner, S., Certain Banach spaces associated with graphs and CL-spaces with 1-unconditonal bases, J. London Math. Soc. (2)43 (1991), 137–148.10.1112/jlms/s2-43.1.137CrossRefGoogle Scholar
21
Tan, D. and Huang, X., Phase-isometries on real normed spaces, J. Math. Anal. Appl. 488(1) (2020), 124058.10.1016/j.jmaa.2020.124058CrossRefGoogle Scholar
22
Tan, D., Huang, X. and Liu, R., Generalized-lush spaces and the Mazur-Ulam property, Studia Math. 219(2) (2013), 139–153.CrossRefGoogle Scholar
23
Tan, D. and Liu, R., A note on The Mazur-Ulam property of almost-CL-spaces, J. Math. Anal. Appl. 405 (2013), 336–341.CrossRefGoogle Scholar
24
Tanaka, R., A further property of spherical isometries, Bull. Austral. Math. Soc. 90(2) (2014), 304–310.CrossRefGoogle Scholar
25
Wigner, E., Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomsprekten, (Braunschweig, Vieweg, 1931).CrossRefGoogle Scholar