Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T14:29:54.241Z Has data issue: false hasContentIssue false

Ramanujan's Radial Limits and Mixed Mock Modular Bilateral q-Hypergeometric Series

Published online by Cambridge University Press:  26 October 2015

Eric Mortenson*
Affiliation:
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany ([email protected])

Abstract

Using results from Ramanujan's lost notebook, Zudilin recently gave an insightful proof of a radial limit result of Folsom et al. for mock theta functions. Here we see that Mortenson's previous work on the dual nature of Appell–Lerch sums and partial theta functions and on constructing bilateral q-series with mixed mock modular behaviour is well suited for such radial limits. We present five more radial limit results, which follow from mixed mock modular bilateral q-hypergeometric series. We also obtain the mixed mock modular bilateral series for a universal mock theta function of Gordon and McIntosh. The later bilateral series can be used to compute radial limits for many classical second-, sixth-, eighth- and tenth-order mock theta functions.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andrews, G. E., Mordell integrals and Ramanujan's ‘lost’ notebook, in Analytic number theory, Lecture Notes in Mathematics, Volume 889, pp. 1048 (Springer, 1981).Google Scholar
2. Andrews, G. E. and Berndt, B. C., Ramanujan's lost notebook: part I (Springer, 2005).Google Scholar
3. Andrews, G. E. and Berndt, B. C., Ramanujan's lost notebook: part II (Springer, 2009).Google Scholar
4. Bajpal, J., Kimport, S., Liang, J., Ma, D. and Ricci, J., Bilateral series and Ramanujan's radial limits, Proc. Am. Math. Soc. 143(2) (2015), 479492.Google Scholar
5. Berndt, B. C. and Rankin, R. C., Ramanujan: letters and commentary (American Mathematical Society, Providence, RI, 1995).CrossRefGoogle Scholar
6. Bryson, J., Ono, K., Pitman, S. and Rhoades, R. C., Unimodal sequences and quantum and mock modular forms, Proc. Natl Acad. Sci. USA 109(40) (2012), 1606316067.Google Scholar
7. Folsom, A., Ono, K. and Rhoades, R. C., Mock theta functions and quantum modular forms, Forum Math. Pi 1(e2) (2013), doi:10.1017/fmp.2013.3.Google Scholar
8. Folsom, A., Ono, K. and Rhoades, R. C., Ramanujan's radial limits, in Ramanujan 125, Contemporary Mathematics, Volume 627, pp. 91102 (American Mathematical Society, Providence, RI, 2014).Google Scholar
9. Gordon, B. and McIntosh, R., A survey of classical mock theta functions, in Partitions, q-series, and modular forms, Developments in Mathematics, Volume 23, pp. 95144 (Springer, 2012).Google Scholar
10. Griffin, M., Ono, K. and Rolen, L., Ramanujan's mock theta functions, Proc. Natl Acad. Sci. USA 110(15) (2013), 57655768.Google Scholar
11. Hickerson, D. R. and Mortenson, E. T., Hecke-type double sums, Appell–Lerch sums, and mock theta functions, I, Proc. Lond. Math. Soc. 109(3) (2014), 382422.CrossRefGoogle Scholar
12. Lerch, M., Poznámky k theorii funkcí elliptických, Rozpravy České Akademie Císaře Františka Josefa pro vědy, (II Cl) I 24 (1892), 465480.Google Scholar
13. Lovejoy, J., Ramanujan-type partial theta identities and conjugate Bailey pairs, Ramanujan J. 29 (2012), 5167.Google Scholar
14. Mortenson, E. T., On the dual nature of partial theta functions and Appell–Lerch sums, Adv. Math. 264 (2014), 236260.Google Scholar
15. Mortenson, E. T., A general Hecke-type double sum expansion, In preparation.Google Scholar
16. Ramanujan, S., The lost notebook and other unpublished papers (Narosa Publishing House, New Delhi, 1988).Google Scholar
17. Rhoades, R. C., On Ramanujan's definition of mock theta functions, Proc. Natl Acad. Sci. USA 110(19) (2013), 75927594.Google Scholar
18. Zudilin, W., On three theorems of Folsom, Ono and Rhoades, Proc. Am. Math. Soc. 143(4) (2015), 14711476.Google Scholar