Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T04:23:00.296Z Has data issue: false hasContentIssue false

Peaking and interpolation by complex polynomials

Published online by Cambridge University Press:  05 May 2021

Thomas H. MacGregor
Affiliation:
State University of New York at Albany, Professor Emeritus, 60 S. Washington St., Athens, NY12015, USA
Michael P. Sterner
Affiliation:
Department of Biology, Chemistry, and Mathematics, University of Montevallo, Station 6493, Harman Hall, Montevallo, AL35115, USA ([email protected])

Abstract

Classical results about peaking from complex interpolation theory are extended to polynomials on a closed disk, and on the complement of its interior. New results are obtained concerning interpolation by univalent polynomials on a Jordan domain whose boundary satisfies certain smoothness conditions.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brickman, L., MacGregor, T. H. and Wilken, D. R., Convex hulls of some classical families of univalent functions, Trans. Am. Math. Soc. 156 (1971), 91107.CrossRefGoogle Scholar
Cantor, D. J. and Phelphs, R. R., An elementary interpolation theorem, Proc. Am. Math. Soc. 16 (1965), 523525.CrossRefGoogle Scholar
Clunie, J. G., Hallenbeck, D. J. and MacGregor, T. H., A peaking and interpolation problem for univalent functions, J. Math Anal. Appl. 111 (1985), 559570.10.1016/0022-247X(85)90235-5CrossRefGoogle Scholar
Davis, P. J., Interpolation and approximation (Ginn (Blaisdell), Waltham, MA, 1963).Google Scholar
Duren, P. L., Univalent functions (Springer-Verlag, New York, 1983).Google Scholar
Goodman, A. W., Curvature under an analytic transformation, J. London Math. Soc. 43 (1968), 527533.10.1112/jlms/s1-43.1.527CrossRefGoogle Scholar
Jones, W. B. and Ruscheweyh, S., Blaschke product interpolation and its application to the design of digital filters, Constr. Approx. 3 (1987), 405409.10.1007/BF01890578CrossRefGoogle Scholar
MacGregor, T. H. and Tepper, D. E., Finite boundary interpolation by univalent functions, J. Math. Anal. Appl. 52 (1988), 315321.Google Scholar
Pólya, G. and Szegö, G., Problems and theorems in analysis II (Springer-Verlag, Berlin, 1976).10.1007/978-1-4757-6292-1CrossRefGoogle Scholar
Pommerenke, Ch., Boundary behaviour of conformal maps (Springer-Verlag, New York, 1992).10.1007/978-3-662-02770-7CrossRefGoogle Scholar
Savin, V. V., On the moduli of Riemann surfaces, Soviet Math. Dokl. 12 (1971), 267270.Google Scholar
Sheil-Small, T., Complex polynomials, Cambridge Studies in Advanced Mathematics, Volume 75 (Cambridge University Press, Cambridge, 2002).10.1017/CBO9780511543074CrossRefGoogle Scholar
Younis, R., Interpolation by a finite Blaschke product, Proc. Am. Math. Soc. 78 (1980), 451452.Google Scholar