No CrossRef data available.
Article contents
A note on a Residual Subset of Lipschitz Functions on Metric Spaces
Published online by Cambridge University Press: 30 December 2014
Abstract
Let (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined on ℝ2 by Alberti et al.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 58 , Issue 3 , October 2015 , pp. 631 - 636
- Copyright
- Copyright © Edinburgh Mathematical Society 2015
References
1.Alberti, G., Bianchini, S. and Crippa, G., Structure of level sets and Sard-type properties of Lipschitz maps, Annali Scuola Norm. Sup. Pisa 12(4) (2013), 863–902.Google Scholar
2.Burago, D., Burago, Y. and Ivanov, S., A course in metric geometry, Graduate Studies in Mathematics, Volume 33 (American Mathematical Society, Providence, RI, 2001).Google Scholar
3.Cavalletti, F., Decomposition of geodesics in the Wasserstein space and the globalization property, Geom. Funct. Analysis 24(2 (2014), 493–551.CrossRefGoogle Scholar
4.Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Analysis 9 (1999), 428–517.Google Scholar
5.Durand-Cartegna, E. and Jaramillo, J. A., Pointwise Lipschitz functions on metric spaces, J. Math. Analysis Applic. 363 (2010), 525–548.Google Scholar
6.Kleiner, B. and Mackay, J., Differentiable structures on metric measure spaces: a primer, preprint (arXiv:1108.1324, 2011).Google Scholar