Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T01:59:56.406Z Has data issue: false hasContentIssue false

From Hankel Operators to Carleson Measures in a Quaternionic Variable

Published online by Cambridge University Press:  17 July 2017

Nicola Arcozzi
Affiliation:
Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy ([email protected]; [email protected])
Giulia Sarfatti
Affiliation:
Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy ([email protected]; [email protected])

Abstract

We introduce and study Hankel operators defined on the Hardy space of regular functions of a quaternionic variable. Theorems analogous to those of Nehari and Fefferman are proved.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alpay, D., Colombo, F. and Sabadini, I., Self-mappings of the quaternionic unit ball: multiplier properties, Schwarz–Pick inequality and Nevanlinna–Pick interpolation problem, Indiana Univ. Math. J. 64 (2015), 151180.Google Scholar
2. Ambrosio, L., Fusco, N. and Pallara, D., Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs (Clarendon Press, Oxford, 2000).CrossRefGoogle Scholar
3. Arcozzi, N. and Sarfatti, G., Invariant metrics for the quaternionic Hardy space, J. Geom. Analysis 25 (2015), 20282059.CrossRefGoogle Scholar
4. Brackx, F., Delanghe, R. and Sommen, F., Clifford analysis (Pitman, Boston, MA, 1982).Google Scholar
5. Carleson, L., Interpolations by bounded analytic functions and the corona problem, Annals Math. 76 (1962), 547559.CrossRefGoogle Scholar
6. Coifman, R. R., Rochberg, R. and Weiss, G., Factorization theorems for Hardy spaces in several variables, Annals Math. 103 (1976), 611635.CrossRefGoogle Scholar
7. De Fabritiis, C., Gentili, G. and Sarfatti, G., Quaternionic Hardy spaces, Annali Sc. Norm. Sup. Pisa Cl. Sci. (2017), in press.CrossRefGoogle Scholar
8. Duren, P. L., Theory of Hp spaces, Pure and Applied Mathematics, Volume 38 (Academic Press, 1970).Google Scholar
9. Fefferman, C. and Stein, E. M., Hp spaces of several variables, Acta Math. 129 (1972), 137193.CrossRefGoogle Scholar
10. Gentili, G. and Struppa, D. C., A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), 279301.CrossRefGoogle Scholar
11. Gentili, G., Stoppato, C. and Struppa, D. C., Regular functions of a quaternionic variable, Springer Monographs in Mathematics (Springer, 2013).CrossRefGoogle Scholar
12. Ghiloni, R., Moretti, V. and Perotti, A., Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys. 25 (2013), 1350006.CrossRefGoogle Scholar
13. Nehari, Z., On bounded bilinear forms, Annals Math. 65 (1957), 153162.CrossRefGoogle Scholar
14. Peller, V. V., An excursion into the theory of Hankel operators, in Holomorphic spaces, Mathematical Sciences Research Institute Publications, Volume 33, pp. 65130 (Cambridge University Press, 1998).Google Scholar
15. Zhu, K., Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, Volume 139 (Marcel Dekker, 1990).Google Scholar