Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T00:24:03.785Z Has data issue: false hasContentIssue false

Free rank of symmetry of products of Dold manifolds

Published online by Cambridge University Press:  30 March 2023

Pinka Dey*
Affiliation:
Statistics and Mathematics Unit, Indian Statistical Institute, B. T. Road, Kolkata 700108, India ([email protected])

Abstract

Dold manifolds $P(m,n)$ are certain twisted complex projective space bundles over real projective spaces and serve as generators for the unoriented cobordism algebra of smooth manifolds. The paper investigates the structure of finite groups that act freely on products of Dold manifolds. It is proved that if a finite group G acts freely and $ \mathbb{Z}_2 $ cohomologically trivially on a finite CW-complex homotopy equivalent to ${\prod_{i=1}^{k} P(2m_i,n_i)}$, then $G\cong (\mathbb{Z}_2)^l$ for some $l\leq k$ (see Theorem A for the exact bound). We also determine some bounds in the case when for each i, ni is even and mi is arbitrary. As a consequence, the free rank of symmetry of these manifolds is determined for cohomologically trivial actions.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adem, A. and Browder, W., The free rank of symmetry of $(S^n)^k$, Invent. Math. 92(2) (1988), 431440.10.1007/BF01404462CrossRefGoogle Scholar
Adem, A. and Davis, J. F., Topics in transformation groups, in Handbook of geometric topology (eds. Daverman, R. J. and Sher, R. B.), (North-Holland, Amsterdam, 2002).Google Scholar
Allday, C. and Puppe, V., Cambridge studies in advanced mathematics, Volume 32 (Cambridge University Press, Cambridge, 1993).Google Scholar
Borel, A., Bredon, G., Floyd, E. E., Montgomery, D. and Palais, R., Seminar on transformation groups, Annals of Mathematics Studies, No. 46 (Princeton University Press, Princeton, NJ, 1960).Google Scholar
Carlsson, G., On the nonexistence of free actions of elementary abelian groups on products of spheres, Amer. J. Math. 102(6) (1980), 11471157.10.2307/2374182CrossRefGoogle Scholar
Carlsson, G., On the rank of abelian groups acting freely on ${(S^{n})^{k}}$, Invent. Math. 69(3) (1982), 393400.10.1007/BF01389361CrossRefGoogle Scholar
Carlsson, G., Free (Z/2)k-actions and a problem in commutative algebra, in Transformation groups, Poznań 1985, (eds. Jackowski, S. and Pawałowski, K.), , Lecture Notes in Mathematics, Volume 1217 (Springer, Berlin, 1986).Google Scholar
Conner, P. E., Differentiable periodic maps, Lecture Notes in Mathematics, 2nd edn, Volume 738 (Springer, Berlin, 1979).10.1007/BFb0063217CrossRefGoogle Scholar
Cusick, L. W., Elementary abelian 2-groups that act freely on products of real projective spaces, Proc. Amer. Math. Soc. 87(4) (1983), 728730.10.1090/S0002-9939-1983-0687651-4CrossRefGoogle Scholar
Cusick, L. W., Free actions on products of even-dimensional spheres, Proc. Amer. Math. Soc. 99(3) (1987), 573574.Google Scholar
Cusick, L. W., Free actions on spaces with nonzero Euler characteristic, Topology Appl. 33(2) (1989), 185196.10.1016/S0166-8641(89)80007-0CrossRefGoogle Scholar
Dey, P., Free involutions on Dold manifolds, in preparation (2022).Google Scholar
Dold, A., Erzeugende der Thomschen Algebra $\frak{N}_*$, Math. Z. 65 (1956), 2535.10.1007/BF01473868CrossRefGoogle Scholar
Fujii, M., K U-groups of Dold manifolds, Osaka J. Math. 3 (1966), 4964.Google Scholar
Greenberg, M. J., Lectures on forms in many variables (W. A. Benjamin, Inc, New York, Amsterdam, 1969).Google Scholar
Hanke, B., The stable free rank of symmetry of products of spheres, Invent. Math. 178(2) (2009), 265298.10.1007/s00222-009-0197-3CrossRefGoogle Scholar
Hatcher, A., Algebraic topology (Cambridge University Press, Cambridge, 2002).Google Scholar
Hopf, H., Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95(1) (1926), 313339.10.1007/BF01206614CrossRefGoogle Scholar
Khare, S. S., On Dold manifolds, Topology Appl. 33(3) (1989), 297307.10.1016/0166-8641(89)90109-0CrossRefGoogle Scholar
Korbaš, J., On parallelizability and span of the Dold manifolds, Proc. Amer. Math. Soc. 141(8) (2013), 29332939.10.1090/S0002-9939-2013-11573-XCrossRefGoogle Scholar
McCleary, J., Cambridge studies in advanced mathematics, 2nd edn, Volume 58 (Cambridge University Press, Cambridge, 2001).Google Scholar
Milnor, J., On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223230.10.1016/0040-9383(65)90055-8CrossRefGoogle Scholar
Morita, A. M. M., de Mattos, D. and Pergher, P. L. Q., The cohomology ring of orbit spaces of free $\mathbb{Z}_2$-actions on some Dold manifolds, Bull. Aust. Math. Soc. 97(2) (2018), 340348.10.1017/S0004972717001058CrossRefGoogle Scholar
Nath, A. and Sankaran, P., On generalized Dold manifolds, Osaka J. Math. 56(1) (2019), 7590.Google Scholar
Okutan, O. B. and Yalçin, E., Free actions on products of spheres at high dimensions, Algebr. Geom. Topol. 13(4) (2013), 20872099.10.2140/agt.2013.13.2087CrossRefGoogle Scholar
Paiva, T. F. V. and dos Santos, E. L.. Cohomology algebra of orbit spaces of free involutions on some Wall manifolds (2021), available at https://arxiv.org/abs/2010.10599.pdf.Google Scholar
Peltier, C. F. and Beem, R. P., Involutions on Dold manifolds, Proc. Amer. Math. Soc. 85(3) (1982), 457460.10.1090/S0002-9939-1982-0656123-4CrossRefGoogle Scholar
Singh, M., Free 2-rank of symmetry of products of Milnor manifolds, Homology Homotopy Appl. 16(1) (2014), 6581.10.4310/HHA.2014.v16.n1.a4CrossRefGoogle Scholar
Smith, P. A., Permutable periodic transformations, Proc. Natl. Acad. Sci. USA 30 (1944), 105108.10.1073/pnas.30.5.105CrossRefGoogle ScholarPubMed
Ucci, J. J., Immersions and embeddings of Dold manifolds, Topology 4(3) (1965), 283293.10.1016/0040-9383(65)90012-1CrossRefGoogle Scholar
Wall, C. T. C., Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292311.10.2307/1970136CrossRefGoogle Scholar
Yalçin, E., Group actions and group extensions, Trans. Amer. Math. Soc. 352(6) (2000), 26892700.10.1090/S0002-9947-00-02485-5CrossRefGoogle Scholar
Yalçin, E., Free actions of p-groups on products of lens spaces, Proc. Amer. Math. Soc. 129(3) (2001), 887898.10.1090/S0002-9939-00-05756-7CrossRefGoogle Scholar