No CrossRef data available.
Published online by Cambridge University Press: 20 January 2025
For an arbitrary ring A, we study the abelianization of the elementary group $\mathit{{\rm E}}_2(A)$. In particular, we show that for a commutative ring A there exists an exact sequence
where ${\rm C}(2,A)$ is the central subgroup of the Steinberg group $\mathit{{\rm St}}(2,A)$ generated by the Steinberg symbols and M is the additive subgroup of A generated by $x(a^2-1)$ and $3(b+1)(c+1)$, with $x\in A, a,b,c \in {A^\times}$.