Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T10:43:55.117Z Has data issue: false hasContentIssue false

2-Log-Concavity of the Boros–Moll Polynomials

Published online by Cambridge University Press:  21 August 2013

William Y. C. Chen
Affiliation:
Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, People's Republic of China ([email protected])
Ernest X. W. Xia
Affiliation:
Department of Mathematics, Jiangsu University, Jiangsu, Zhenjiang 212013, People's Republic of China ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Boros–Moll polynomials Pm (a) arise in the evaluation of a quartic integral. It has been conjectured by Boros and Moll that these polynomials are infinitely log-concave. In this paper, we show that Pm (a) is 2-log-concave for any m ≥ 2. Let di (m) be the coefficient of ai in Pm (a). We also show that the sequence is log-concave.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2013 

References

1.Amdeberhan, T. and Moll, V. H., A formula for a quartic integral: a survey of old proofs and some new ones, Ramanujan J. 18 (2009), 91102.CrossRefGoogle Scholar
2.Amdeberhan, T. and Moll, V. H., A by-product of an integral evaluation, Ramanujan J., in press.Google Scholar
3.Amdeberhan, T., Manna, D. and Moll, V. H., The 2-adic valuation of a sequence arising from a rational integral, J. Combin. Theory A 115 (2008), 14741486.CrossRefGoogle Scholar
4.Boros, G. and Moll, V. H., An integral hidden in Gradshteyn and Ryzhik, J. Computat. Appl. Math. 106 (1999), 361368.CrossRefGoogle Scholar
5.Boros, G. and Moll, V. H., A sequence of unimodal polynomials, J. Math. Analysis Applic. 237 (1999), 272285.CrossRefGoogle Scholar
6.Boros, G. and Moll, V. H., A criterion for unimodality, Electron. J. Combin. 6 (1999), R10.CrossRefGoogle Scholar
7.Boros, G. and Moll, V. H., The double square root, Jacobi polynomials and Ramanujan's Master Theorem, J. Computat. Appl. Math. 130 (2001), 337344.CrossRefGoogle Scholar
8.Boros, G. and Moll, V. H., Irresistible integrals (Cambridge University Press, 2004).CrossRefGoogle Scholar
9.Brändén, P., Iterated sequences and the geometry of zeros, J. Reine Angew. Math. 658 (2011), 115131.Google Scholar
10.Chen, W. Y. C. and Gu, C. C. Y., The reverse ultra log-concavity of the Boros–Moll polynomials, Proc. Am. Math. Soc. 137 (2009), 39913998.CrossRefGoogle Scholar
11.Chen, W. Y. C. and Xia, E. X. W., The ratio monotonicity of the Boros–Moll polynomials, Math. Computat. 78 (2009), 22692282.CrossRefGoogle Scholar
12.Chen, W. Y. C. and Xia, E. X. W., Proof of Moll's minimum conjecture, Eur. J. Combin. 34 (2013), 787791.CrossRefGoogle Scholar
13.Chen, W. Y. C., Dou, D. Q. J. and Yang, A. L. B., Brändén's conjectures on the Boros–Moll polynomials, Int. Math. Res. Not., in press.Google Scholar
14.Chen, W. Y. C., Pang, S. X. M. and Qu, E. X. Y., On the combinatorics of the Boros–Moll polynomials, Ramanujan J. 21 (2010), 4151.CrossRefGoogle Scholar
15.Chen, W. Y. C., Pang, S. X. M. and Qu, E. X. Y., Partially 2-colored permutations and the Boros–Moll polynomials, Ramanujan J. 27 (2012), 297304.CrossRefGoogle Scholar
16.Chen, W. Y. C., Wang, L. X. W. and Yang, A. L. B., Schur positivity and the q-log-convexity of the Narayana polynomials, J. Algebraic Combin. 32 (2010), 303338.CrossRefGoogle Scholar
17.Chen, W. Y. C., Wang, L. X. W. and Xia, E. X. W., The interlacing log-concavity of the Boros–Moll polynomials, Pac. J. Math. 254 (2011), 8999.CrossRefGoogle Scholar
18.Chen, W. Y. C., Yang, A. L. B. and Zhou, E. L. F., Ratio monotonicity of polynomials derived from nondecreasing sequences, Electron. J. Combin. 17 (2010), N37.CrossRefGoogle Scholar
19.Craven, T. and Csordas, G., Iterated Laguerre and Turán inequalities, J. Inequal. Pure Appl. Math. 3(3) (2002), no. 39.Google Scholar
20.Fisk, S., Questions about determinants and polynomials, e-print (arXiv:0808.1850 [Math.CA], 2008).Google Scholar
21.Kauers, M. and Paule, P., A computer proof of Moll's log-concavity conjecture, Proc. Am. Math. Soc. 135 (2007), 38473856.CrossRefGoogle Scholar
22.Manna, D. V. and Moll, V. H., A remarkable sequence of integers, Expo. Math. 27 (2009), 289312.Google Scholar
23.McNamara, P. R. and Sagan, B., Infinite log-concavity: developments and conjectures, Adv. Appl. Math. 44 (2010), 115.CrossRefGoogle Scholar
24.Moll, V. H., The evaluation of integrals: a personal story, Not. Am. Math. Soc. 49 (2002), 311317.Google Scholar
25.Moll, V. H., Combinatorial sequences arising from a rational integral, Online J. Analysis Combin. 2 (2007).Google Scholar
26.Wilf, H. S. and Zeilberger, D., An algorithmic proof theory for hypergeometric (ordinary and ‘q’) multisum/integral identities, Invent. Math. 108 (1992), 575633.CrossRefGoogle Scholar