Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T18:42:11.876Z Has data issue: false hasContentIssue false

Towards agile automotive development: benefits, challenges and organizational changes

Published online by Cambridge University Press:  16 May 2024

Franziska Scharold*
Affiliation:
Technische Universität Dresden, Germany
Kristin Paetzold-Byhain
Affiliation:
Technische Universität Dresden, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Agile methods are increasingly being used in automotive development. This research delves into the current state of agile transformation in the automotive industry regarding benefits, challenges, organizational adaptations, and successful measures to establish the agile approach. The results of an online survey reveal that benefits are already evident after 6 months and that challenges are mainly organizational in nature and organizational structures need to be adapted. Main drivers of success are pilot projects on a small scale and top management support as well as training managers.

Type
Design Organisation, Collaboration and Management
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Baham, C. and Hirschheim, R. (2022), “Issues, challenges, and a proposed theoretical core of agile software development research”, Information Systems Journal, Vol. 32 No. 1, pp. 103129. https://doi.org/10.1111/isj.12336CrossRefGoogle Scholar
Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R., Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D. (2001), “Manifesto for Agile Software Development”, available at: agilemanifesto.org (accessed 15 November 2023).Google Scholar
Böhmer, A.I., Beckmann, A. and Lindemann, U. (2015), “Open Innovation Ecosystem - Makerspaces within an Agile Innovation Process”, available at: https://api.semanticscholar.org/CorpusID:62828278.Google Scholar
Bühner, M. (2021), Einführung in die Test- und Fragebogenkonstruktion, Pearson Studium - Psychologie, 4., korrigierte und erweiterte Auflage, Pearson, München.Google Scholar
Conboy, K. (2009), “Agility from First Principles: Reconstructing the Concept of Agility in Information Systems Development”, Information Systems Research, Vol. 20 No. 3, pp. 329354. https://doi.org/10.1287/isre.1090.0236CrossRefGoogle Scholar
Edison, H., Wang, X. and Conboy, K. (2022), “Comparing Methods for Large-Scale Agile Software Development: A Systematic Literature Review”, IEEE Transactions on Software Engineering, Vol. 48 No. 8, pp. 27092731. https://doi.org/10.1109/TSE.2021.3069039CrossRefGoogle Scholar
Gartzen, T., Brambring, F. and Basse, F. (2016), “Target-oriented Prototyping in Highly Iterative Product Development”, Procedia CIRP, Vol. 51, pp. 1923. https://doi.org/10.1016/j.procir.2016.05.095CrossRefGoogle Scholar
Hohl, P., Münch, J., Schneider, K. and Stupperich, M. (2016), “Forces that Prevent Agile Adoption in the Automotive Domain”, in Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S. and Mikkonen, T. (Eds.), Product-Focused Software Process Improvement, Lecture Notes in Computer Science, Vol. 10027, Springer International Publishing, Cham, pp. 468476. https://doi.org/10.1007/978-3-319-49094-6_32Google Scholar
Katumba, B. and Knauss, E. (2014), “Agile Development in Automotive Software Development: Challenges and Opportunities”, in Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J. and Raatikainen, M. (Eds.), Product-Focused Software Process Improvement, Lecture Notes in Computer Science, Vol. 8892, Springer International Publishing, Cham, pp. 3347. https://doi.org/10.1007/978-3-319-13835-0_3Google Scholar
Komus, A. and Kuberg, M. (2020), Studie Status Quo (Scaled) Agile 2019/20: 4. Internationale Studie zu Nutzen und Erfolgsfaktoren (Skalierter) agiler Ansätze.Google Scholar
Michalides, M., Nicklas, S.J., Weiss, S. and Paetzold-Byhain, K. (2022), Agile Entwicklung physischer Produkte. https://doi.org/10.18726/2022_3CrossRefGoogle Scholar
Nicklas, S.J., Michalides, M., Atzberger, A., Weiss, S. and Paetzold-Byhain, K. (2021), Agile Entwicklung physischer Produkte. https://doi.org/10.18726/2021_3CrossRefGoogle Scholar
Ovesen, N. (2012), “The Challenges of Becoming Agile”, PhD Thesis, Aalborg University, 2012.Google Scholar
Rohrmann, B. (1978), “Empirische Studien zur Entwicklung von Antwortskalen für die sozialwissenschaftliche Forschung”, Zeitschrift für Sozial-Psychologie Frankfurt/Main, Vol. 9 No. 3, pp. 222245.Google Scholar
Scharold, F., Schrof, J. and Paetzold-Byhain, K. (2023), “ANALYSIS OF THE CORRELATION BETWEEN AGILE TEAM MATURITY AND STANDARDISED KEY PERFORMANCE INDICATORS IN AUTOMOTIVE DEVELOPMENT”, Proceedings of the Design Society, Vol. 3, pp. 573582. https://doi.org/10.1017/pds.2023.58CrossRefGoogle Scholar
Schmidt, T.S., Atzberger, A., Gerling, C., Schrof, J., Weiss, S. and Paetzold, K. (2019), Agile Development of Physical Products: An Empirical Study about Potentials, Transition and Applicability, Universität der Bundeswehr München, Neubiberg.Google Scholar
Schmidt, T.S., Weiss, S. and Paetzold, K. (2018), “EXPECTED VS. REAL EFFECTS OF AGILE DEVELOPMENT OF PHYSICAL PRODUCTS: APPORTIONING THE HYPE”, in Proceedings of the DESIGN 2018 15th International Design Conference, May, 21–24, 2018, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia; The Design Society, Glasgow, UK, pp. 21212132. https://doi.org/10.21278/idc.2018.0198CrossRefGoogle Scholar
Schwaber, K. and Sutherland, J. (2020), “The Scrum Guide”, available at: https://scrumguides.org/scrum-guide.html (accessed 2 October 2023).Google Scholar
Steghöfer, J.-P., Knauss, E., Horkoff, J. and Wohlrab, R. (2019), “Challenges of Scaled Agile for Safety-Critical Systems”, in Franch, X., Männistö, T. and Martínez-Fernández, S. (Eds.), Product-Focused Software Process Improvement, Lecture Notes in Computer Science, Vol. 11915, Springer International Publishing, Cham, pp. 350366. https://doi.org/10.1007/978-3-030-35333-9_26Google Scholar
Stelzmann, E. (2011), “Agile Systems Engineering: Eine Methodik zum besseren Umgang mit Veränderungen bei der Entwicklung komplexer Systeme”, PhD Thesis, Technische Universität Graz, 2011.Google Scholar
Stelzmann, E., Kreiner, C., Spork, G., Messnarz, R. and Koenig, F. (2010), “Agility Meets Systems Engineering: A Catalogue of Success Factors from Industry Practice”, in Riel, A., O'Connor, R., Tichkiewitch, S. and Messnarz, R. (Eds.), Systems, Software and Services Process Improvement, Communications in Computer and Information Science, Vol. 99, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 245256. https://doi.org/10.1007/978-3-642-15666-3_22Google Scholar
Vollus, K., Bongertmann, H. and Rossmann, A. (2020), Agilität in der Automobilindustrie: Konstituierende Faktoren und Auswirkungen auf die Unternehmensperformance.Google Scholar
Weiss, S., Paetzold-Byhain, K., Michalides, M., Pendzik, M., Scharold, F. and Stoiber, L. (2023), Agile Entwicklung physischer Produkte 2023, Technische Universität Dresden. https://doi.org/10.25368/2023.213CrossRefGoogle Scholar