Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T23:44:50.378Z Has data issue: false hasContentIssue false

Tool support for implementing a methodology in magnet development projects at CERN

Published online by Cambridge University Press:  16 May 2024

Jens Kaeske*
Affiliation:
European Organization for Nuclear Research (CERN), Switzerland IPEK - Institute of Product Engineering, Karlsruhe Institute of Technology, Germany
Erik Wagner
Affiliation:
European Organization for Nuclear Research (CERN), Switzerland
Albert Albers
Affiliation:
IPEK - Institute of Product Engineering, Karlsruhe Institute of Technology, Germany
Stephan Russenschuck
Affiliation:
European Organization for Nuclear Research (CERN), Switzerland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Abstract product development models, such as the Integrated Product Engineering Model (iPeM), are insightful yet complex, hindering practical application. The paper introduces a prototypical tool designed to simplify the application of iPeM. A case study at CERN showcases the tool's capability in utilizing the iPeM to streamline the tailoring of standards into methodologies for research environments. The tool's impact is evaluated through interviews at CERN. The findings suggest the tool's benefits, especially for individuals without formal project management backgrounds.

Type
Systems Engineering and Design
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Albers, A. (1994), “Simultaneous Engineering, Projektmanagement und Konstruktionsmethodik Werkzeuge zur Effizienzsteigerung”, VDI Berichte Nr. 1120, VDI - Verein Deutscher Ingenieure, pp. 73–106, available at: https://publikationen.bibliothek.kit.edu/1000066907.Google Scholar
Albers, A. (2010), “Five Hypotheses about Engineering Processes and their Consequences”, in Horváth, I., Mandorli, F. and Rusák, Z. (Eds.), Proceedings of the TMCE 2010, presented at the TMCE 2010, Ancona, Italy, available at: https://www.researchgate.net/profile/Albert-Albers/publication/316940066 (accessed 08.02.2024).Google Scholar
Albers, A. and Braun, A. (2011), “A Generalised Framework to Compass and to Support Complex Product Engineering Processes”, International Journal of Product Development, Vol. 15 No. 1, pp. 625, https://doi.org/10.1504/IJPD.2011.043659.CrossRefGoogle Scholar
Albers, A., Braun, A., Heimicke, J. and Richter, T. (2011), “Der Prozess der Produktentstehung”, Handbuch Leichtbau, pp. 135, https://doi.org/10.3139/9783446459847.001.CrossRefGoogle Scholar
Albers, A., Braun, A. and Muschik, S. (2010), “Uniqueness and the Multiple Fractal Character of Product Engineering Processes”, in Heisig, P., Clarkson, P.J. and Vajna, S. (Eds.), Modelling and Management of Engineering Processes, Springer London, London, pp. 15–26, https://doi.org/10.1007/978-1-84996-199-8_2.CrossRefGoogle Scholar
Albers, A., Burkardt, N., Meboldt, M. and Saak, M. (2005), “Spalten Problem Solving Methodology in the Product Development”, https://doi.org/10.5445/IR/1000007075.CrossRefGoogle Scholar
Albers, A., Ebel, B. and Lohmeyer, Q. (2012), “Systems of Objectives in Complex Product Development”, Tools and Methods of Competitive Engineering: Proceedings of the Ninth International Symposium on Tools and Methods of Competitive Engineering (TMCE 2012), Karlsruhe, Germany, May 7-11, 2012. Ed.: Horváth, I., available at: https://www.academia.edu/download/31825254/Albers_2012_PAPER_Systems_of_Objectives.pdf.Google Scholar
Albers, A. and Meboldt, M. (2007), “SPALTEN Matrix — Product Development Process on the Basis of Systems Engineering and Systematic Problem Solving”, in Krause, F.-L. (Ed.), The Future of Product Development, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 4352, https://doi.org/10.1007/978-3-540-69820-3_7.CrossRefGoogle Scholar
Albers, A. and Muschik, S. (2010), “The Role and Application of Activities in the Integrated Product Engineering Model (iPeM)”, available at: https://www.designsociety.org/publication/29358/THE+ROLE+AND+APPLICATION+OF+ACTIVITIES+IN+THE+INTEGRATED+PRODUCT+ENGINEERING+MODEL+%28iPeM%29 (accessed 08.02.2024).Google Scholar
Albers, A., Reiss, N., Bursac, N. and Richter, T. (2016), “iPeM – Integrated Product Engineering Model in Context of Product Generation Engineering”, Procedia CIRP, Vol. 50, pp. 100105, https://doi.org/10.1016/j.procir.2016.04.168.CrossRefGoogle Scholar
Albers, A., Reiß, N., Bursac, N., Walter, B. and Gladysz, B. (2015), “InnoFox - Situationsspezifische Methodenempfehlung im Produktentstehungsprozess”, available at: https://www.researchgate.net/publication/279542318 (accessed 08.02.2024).Google Scholar
Albers, A., Saak, M., Burkardt, N. and Schweinberger, N. (2002), “Gezielte Problemlösung bei der Produktentwicklung mit Hilfe der SPALTEN-Methode”, 47. Internationales Wissenschaftliches Kolloquium, Ilmenau, Germany, 23-26. September 2002, Vol. 23, p. 26.Google Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer London, London, https://doi.org/10.1007/978-1-84882-587-1.CrossRefGoogle Scholar
Bonnal, P., Feral, B., Kershaw, K. and Nicquevert, B. (2016), “openSE: a Systems Engineering Framework Particularly Suited to Particle Accelerator Studies and Development Projects”, p. 4, https://doi.org/10.48550/arXiv.1801.03836.CrossRefGoogle Scholar
Bursac, N. (2016), Model Based Systems Engineering as a Support for the Modular Design in the Context of the Early Stages of Product Generation Engineering, https://doi.org/10.5445/IR/1000054484.CrossRefGoogle Scholar
Dörner, D. (1979), Problemlösen als Informationsverarbeitung, Kohlhammer, available at: https://fis.uni-bamberg.de/handle/uniba/32350 (accessed 09.07.2023).Google Scholar
Dumitrescu, R., Albers, A., Riedel, O., Stark, R. and Gausemeier, J. (Eds.). (2021), Engineering in Germany: The Status Quo in Business and Science, a Contribution to Advanced Systems Engineering, available at: https://www.advanced-systems-engineering.de/#studie (accessed 08.02.2024).Google Scholar
Ehrlenspiel, K. and Meerkamm, H. (2013), Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 5., überarb. und erw. Aufl. ISBN: 978-3-446-43548-3., Hanser, München.CrossRefGoogle Scholar
Gausemeier, J., Lindemann, U., Reinhart, G. and Wiendahl, H. (2000), Kooperatives Produktengineering - Ein Neues Selbstverständnis Des Ingenieurmäßigen Wirkens, Vol. 79 ISBN: 978-3-931466-78-7., Heinz Nixdorf Institut, Universität Paderborn.Google Scholar
Gerst, M. (2002), Strategische Produktentscheidungen in der integrierten Produktentwicklung, Hut, München, available at: https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2002062518040 (accessed 08.02.2024).Google Scholar
Henning, F. and Moeller, E. (2020), Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung, 2nd ed., Carl Hanser Verlag GmbH & Co. KG, München, https://doi.org/10.3139/9783446459847.CrossRefGoogle Scholar
Honoré-Livermore, E., Fossum, K.R. and Veitch, E. (2021), “Academics’ Perception of Systems Engineering and Applied Research Projects”, Systems Engineering, Vol. 25 No. 1, pp. 1934, https://doi.org/10.1002/sys.21599.CrossRefGoogle Scholar
Inkermann, D. (2019), “Towards Model-based Process Engineering”, Proceedings of the Design Society: International Conference on Engineering Design, Cambridge University Press, Vol. 1 No. 1, pp. 37413750, https://doi.org/10.1017/dsi.2019.381.Google Scholar
Kaeske, J., Fiscarelli, L., Albers, A. and Russenschuck, S. (2024), “Overview of Identified Challenges in the Development Process of Superconducting Accelerator Magnets”, Designs, Multidisciplinary Digital Publishing Institute, Vol. 8 No. 1, p. 13, https://doi.org/10.3390/designs8010013.Google Scholar
Lindemann, U. (2009), Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-01423-9.CrossRefGoogle Scholar
Lohmeyer, Q. and Albers, A. (2013), Human-Centered Modeling of Product Development Systems in Consideration of the Synthesis and Analysis of Dynamic Systems of Objectives [Dissertation], IPEK - Forschungsberichte, IPEK - Institut für Produktentwicklung, Karlsruher Institut für Technologie (KIT), available at: https://doi.org/10.5445/IR/1000035102.Google Scholar
Meboldt, M. (2008), “Mentale und formale Modellbildung in der Produktentstehung – als Beitrag zum integrierten Produktentstehungs-Modell (iPeM)”, https://doi.org/10.5445/IR/1000028850.CrossRefGoogle Scholar
Muschik, S. (2011), Development of Systems of Objectives in Early Product Engineering. [Dissertation], https://doi.org/10.5445/IR/1000023768.CrossRefGoogle Scholar
Reiß, N. (2018), “Approaches to Increase the Acceptance of Methods in Agile Processes of Pge – Product Generation Engineering”, Karlsruhe, https://doi.org/10.5445/IR/1000084762.CrossRefGoogle Scholar
Ropohl, G. and Aggteleky, B. (Eds.). (1975), Systemtechnik: Grundlagen Und Anwendung ISBN: 978-3-446-11829-4., Hanser, München ; Wien.Google Scholar
Rupprecht, C. (2002), “Ein Konzept zur projektspezifischen Individualisierung von Prozessmodellen”, Karlsruhe, https://doi.org/10.5445/IR/3042002.CrossRefGoogle Scholar
Saak, M. (2006), “Development of a Concept and of a Prototype for a Computer-Aided Tool for the Efficient Employment of the Problem Solving Methodology ‘SPALTEN’”, Karlsruhe, https://doi.org/10.5445/IR/1000005783.CrossRefGoogle Scholar
Smith, R.P. and Morrow, J.A. (1999), “Product Development Process Modeling”, Design Studies, Vol. 20 No. 3, pp. 237261, https://doi.org/10.1016/S0142-694X(98)00018-0.CrossRefGoogle Scholar
Stachowiak, H. (1973), Allgemeine Modelltheorie ISBN: 978-3-211-81106-1., Springer, Wien New York.CrossRefGoogle Scholar
VDI 2221. (1993), Systematic Approach to the Design of Technical Systems and Products, VDI - Verein Deutscher Ingenieure.Google Scholar
VDI 2221. (2019a), Design of Technical Products and Systems - Model of Product Design, VDI - Verein Deutscher Ingenieure, available at: https://www.vdi.de/en/home/vdi-standards (accessed 08.02.2024).Google Scholar
VDI 2221. (2019b), Design of Technical Products and Systems - Configuration of Individual Product Design Processes, VDI - Verein Deutscher Ingenieure, available at: https://www.vdi.de/en/home/vdi-standards (accessed 08.02.2024).Google Scholar
Winzer, P. (2013), Generic Systems Engineering: Ein Methodischer Ansatz Zur Komplexitätsbewältigung, https://doi.org/10.1007/978-3-642-30365-4.CrossRefGoogle Scholar
Wynn, D.C. and Clarkson, P.J. (2018), “Process models in design and development”, Research in Engineering Design, Vol. 29 No. 2, pp. 161202, https://doi.org/10.1007/s00163-017-0262-7.CrossRefGoogle Scholar
Zingel, C., Albers, A., Matthiesen, S. and Maletz, M. (2012), “Experiences and Advancements from One Year of Explorative Application of an Integrated Model- Based Development Technique Using C&C2-A in SysML”, available at: https://www.iaeng.org/IJCS/issues_v39/issue_2/IJCS_39_2_04.pdf (accessed 08.02.2024).Google Scholar